MRI EVALUATION OF LIVER LESIONS WITH HISTOPATHOLOGICAL CORRELATION
Main Article Content
Keywords
Liver lesions, Magnetic Resonance Imaging, Histopathological correlation, Diagnostic accuracy, Diffusion-weighted imaging This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution‑ Non Commercial‑Share Alike 4.0 License, which allows others to remix, tweak, and build upon the work non‑commercially,, as long as appropriate credit is given and the new creations are licensed under the identical terms.
Abstract
Introduction: Accurate characterization of liver lesions is crucial for optimal patient management. Magnetic Resonance Imaging (MRI) has emerged as a powerful non-invasive tool for liver lesion evaluation. This study aimed to assess the diagnostic accuracy of MRI in characterizing liver lesions through correlation with histopathological findings.
Methods: A prospective, observational study was conducted over 6 months, involving 150 patients with liver lesions. All patients underwent 3T MRI examinations including T1-weighted, T2-weighted, diffusion-weighted, and dynamic contrast-enhanced sequences. Two radiologists independently analyzed the MRI images, and their findings were correlated with histopathological results. Statistical analysis included diagnostic accuracy measures, inter-observer agreement, and multivariate analysis of predictive MRI features.
Results: MRI demonstrated high diagnostic performance with 92.3% sensitivity, 88.7% specificity, and 90.7% overall accuracy in characterizing liver lesions. Strong inter-observer agreement was observed for most MRI features (κ = 0.79-0.92). Significant differences in ADC values were found between benign (1.85 ± 0.42 × 10⁻³ mm²/s) and malignant (1.12 ± 0.31 × 10⁻³ mm²/s) lesions (p<0.001). Multivariate analysis identified delayed washout (OR = 5.1), diffusion restriction (OR = 4.2), and arterial enhancement (OR = 3.5) as the strongest predictors of malignancy. Conclusion: MRI demonstrates excellent diagnostic accuracy in characterizing liver lesions, with strong correlation to histopathological findings. The identified predictive imaging features and quantitative parameters provide a robust framework for non-invasive lesion assessment, supporting the central role of MRI in the diagnostic algorithm for liver lesions.
References
2. Choi, J. Y., Lee, J. M., & Sirlin, C. B. (2014). CT and MR imaging diagnosis and staging of hepatocellular carcinoma: part I. Development, growth, and spread: key pathologic and imaging aspects. Radiology, 272(3), 635-654.
3. Fowler, K. J., Brown, J. J., & Narra, V. R. (2011). Magnetic resonance imaging of focal liver lesions: approach to imaging diagnosis. Hepatology, 54(6), 2227-2237.
4. Galia, M., Taibbi, A., Marin, D., Furlan, A., Dioguardi Burgio, M., Agnello, F., ... & Brancatelli, G. (2014). Focal liver lesions: spectrum of diagnostic findings and pitfalls. Diagnostic and Interventional Radiology, 20(4), 309.
5. Jang, H. J., Kim, T. K., Burns, P. N., & Wilson, S. R. (2015). Enhancement patterns of hepatocellular carcinoma at contrast-enhanced US: comparison with histologic differentiation. Radiology, 274(3), 898-907.
6. Kitao, A., Matsui, O., Yoneda, N., Kozaka, K., Shinmura, R., Koda, W., ... & Gabata, T. (2011). The uptake transporter OATP8 expression decreases during multistep hepatocarcinogenesis: correlation with gadoxetic acid enhanced MR imaging. European Radiology, 21(10), 2056-2066.
7. Lee, J. M., Yoon, J. H., Kim, K. W., Kim, S. H., & Kim, J. H. (2017). State-of-the-art imaging of liver fibrosis and cirrhosis: A comprehensive review of current applications and future perspectives. European Journal of Radiology, 95, 121-135.
8. Matos, A. P., Velloni, F., Ramalho, M., AlObaidy, M., Rajapaksha, A., & Semelka, R. C. (2015). Focal liver lesions: Practical magnetic resonance imaging approach. World Journal of Hepatology, 7(24), 2543.
9. Renzulli, M., Biselli, M., Brocchi, S., Granito, A., Vasuri, F., Tovoli, F., ... & Golfieri, R. (2018). New hallmark of hepatocellular carcinoma, early hepatocellular carcinoma and high-grade dysplastic nodules on Gd-EOB-DTPA MRI in patients with cirrhosis: a new diagnostic algorithm. Gut, 67(9), 1674-1682.
10. Sano, K., Ichikawa, T., Motosugi, U., Sou, H., Muhi, A. M., Matsuda, M., ... & Araki, T. (2011). Imaging study of early hepatocellular carcinoma: usefulness of gadoxetic acid-enhanced MR imaging. Radiology, 261(3), 834-844.
11. Taouli, B., & Koh, D. M. (2010). Diffusion-weighted MR imaging of the liver. Radiology, 254(1), 47-66.
12. Van Beers, B. E., Pastor, C. M., & Hussain, H. K. (2012). Primovist, Eovist: what to expect? Journal of Hepatology, 57(2), 421-429.
13. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394-424.
14. Chernyak, V., Fowler, K. J., Kamaya, A., Kielar, A. Z., Elsayes, K. M., Bashir, M. R., ... & Mitchell, D. G. (2018). Liver Imaging Reporting and Data System (LI-RADS) version 2018: imaging of hepatocellular carcinoma in at-risk patients. Radiology, 289(3), 816-830.
15. Choi, J. Y., Lee, J. M., & Sirlin, C. B. (2014). CT and MR imaging diagnosis and staging of hepatocellular carcinoma: part I. Development, growth, and spread: key pathologic and imaging aspects. Radiology, 272(3), 635-654.
16. Donati, F., Boraschi, P., Gigoni, R., Salemi, S., Falaschi, F., & Bartolozzi, C. (2012). Focal liver lesions in cirrhosis: Value of contrast-enhanced ultrasonography compared with Gd-EOB-DTPA-enhanced MRI and α-fetoprotein. European Journal of Radiology, 81(11), 2974-2980.
17. Fowler, K. J., Brown, J. J., & Narra, V. R. (2011). Magnetic resonance imaging of focal liver lesions: approach to imaging diagnosis. Hepatology, 54(6), 2227-2237.
18. Galia, M., Taibbi, A., Marin, D., Furlan, A., Dioguardi Burgio, M., Agnello, F., ... & Brancatelli, G. (2014). Focal liver lesions: spectrum of diagnostic findings and pitfalls. Diagnostic and Interventional Radiology, 20(4), 309.
19. Matos, A. P., Velloni, F., Ramalho, M., AlObaidy, M., Rajapaksha, A., & Semelka, R. C. (2015). Focal liver lesions: Practical magnetic resonance imaging approach. World Journal of Hepatology, 7(24), 2543.
20. Renzulli, M., Biselli, M., Brocchi, S., Granito, A., Vasuri, F., Tovoli, F., ... & Golfieri, R. (2018). New hallmark of hepatocellular carcinoma, early hepatocellular carcinoma and high-grade dysplastic nodules on Gd-EOB-DTPA MRI in patients with cirrhosis: a new diagnostic algorithm. Gut, 67(9), 1674-1682.
21. Sano, K., Ichikawa, T., Motosugi, U., Sou, H., Muhi, A. M., Matsuda, M., ... & Araki, T. (2011). Imaging study of early hepatocellular carcinoma: usefulness of gadoxetic acid-enhanced MR imaging. Radiology, 261(3), 834-844.
22. Taouli, B., & Koh, D. M. (2010). Diffusion-weighted MR imaging of the liver. Radiology, 254(1), 47-66.
23. Van Beers, B. E., Pastor, C. M., & Hussain, H. K. (2012). Primovist, Eovist: what to expect? Journal of Hepatology, 57(2), 421-429.
24. Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural networks: an overview and application in radiology. Insights into Imaging, 9(4), 611-629.