Journal of Population Therapeutics & Clinical Pharmacology

RESEARCH ARTICLE DOI: 10.53555/2wt9y164

TO EVALUATE THE EFFICACY OF THE OSTAP BLOCK WITH ROPIVACAINE FOR POSTOPERATIVE ANALGESIA IN LAPAROSCOPIC CHOLECYSTECTOMY

Dr. Fidah Mohamed¹, Dr. Mahparah Rafiq², Dr. Mohammad Sadiq Malla^{3*}, Dr. Mohsin Farooq⁴

¹Senior Resident, Department of Anaesthesiology & Critical Care, Govt. Medical College, Srinagar, India.

²Senior Resident, Department of Anaesthesiology & Critical Care, Govt. Medical College, Srinagar, India.

- ^{3*}Associate Professor, Department of Anaesthesiology & Critical Care, Govt. Medical College, Srinagar, India.
- ⁴ Postgraduate scholar, Department of Anaesthesiology & Critical Care, Govt. Medical College, Srinagar, India.

*Corresponding Author: Dr. Mohammad Sadiq Malla

*Associate Professor, Department of Anaesthesiology & Critical Care, Govt. Medical College, Srinagar, India. Mail id: sadiqanaes@gmail.com

Abstract

Background:

Postoperative pain management remains a critical challenge in laparoscopic cholecystectomy, particularly in procedures involving the anterior abdominal wall. The ultrasound-guided Oblique Subcostal Transversus Abdominis Plane (OSTAP) block has emerged as a promising technique for improving postoperative analgesia.

Aim: To evaluate the efficacy of the OSTAP block with ropivacaine in reducing postoperative pain, prolonging analgesia duration, and minimizing opioid consumption in patients undergoing laparoscopic cholecystectomy.

Methods: This observational study was conducted in the Department of Anaesthesiology at Government Medical College and Associated Hospitals, Srinagar (J&K). A total of 70 patients aged 28 to 70 years, classified as ASA I-II, undergoing elective laparoscopic cholecystectomy under general anesthesia, were divided into two groups. Group A received an ultrasound-guided OSTAP block with 0.2% ropivacaine, while Group B did not receive the block. Pain scores (VAS), time to first analgesia request, total opioid consumption, and side effects were recorded and compared between the groups.

Results: Group A demonstrated significantly lower VAS scores at all intervals (0, 2, 4, 6, 12, and 24 hours) compared to Group B (2.3 vs. 4.7; p=0.001). The duration of analgesia was significantly prolonged in Group A $(7.25\pm1.20 \text{ hours vs. } 4.05\pm0.80 \text{ hours}; \text{ p=0.003})$. Total opioid consumption was reduced in Group A $(80\pm30.2 \text{ mg vs. } 170\pm70.5 \text{ mg}; \text{ p<0.05})$. No side effects or complications were observed in either group.

Conclusion: The OSTAP block with ropivacaine is a cost-effective, safe, and effective technique for postoperative pain management in laparoscopic cholecystectomy. It significantly improves pain

control, reduces opioid consumption, and prolongs analgesia duration without associated side effects.

Keywords: OSTAP block, laparoscopic cholecystectomy, postoperative pain, ropivacaine, ultrasound-guided block, opioid consumption.

Introduction

Pain is an unpleasant sensory and emotional experience often linked to tissue injury. Effective postoperative pain control is crucial for improving clinical outcomes, especially after surgical procedures. In the case of laparoscopic cholecystectomy (LC), the gold standard for treating symptomatic gallbladder diseases such as cholecystitis and cholelithiasis, postoperative pain remains a significant concern despite the minimally invasive nature of the procedure [1,2]. Even though LC is a less invasive option, patients experience considerable pain in the first 24 hours after surgery, which may hinder early ambulation and recovery [3,4].

Traditional pain management in such surgeries often relies on opioids, which can cause side effects such as excessive sedation, postoperative nausea, and vomiting (PONV) [5]. To mitigate these side effects, multimodal analgesia, which combines different classes of analgesics or local anesthetics, has become an essential part of the postoperative pain management strategy. One such technique that has gained popularity is the Transversus Abdominis Plane (TAP) block, first described by Rafi et al. [6]. The TAP block has proven effective in reducing opioid consumption after abdominal surgeries and has since become widely utilized in various abdominal procedures, including laparoscopic surgeries [7,8].

Subsequently, the Oblique Subcostal TAP (OSTAP) block, a variant of the TAP block, was introduced by Hebbard et al. [9]. This modification involves a more specific, ultrasound-guided approach that targets the upper abdominal wall, making it effective in providing analgesia for upper abdominal surgeries, such as LC, while also reducing complications related to the procedure. Ultrasound guidance significantly enhances the performance of TAP blocks by allowing real-time visualization of needle placement, ensuring accurate local anesthetic deposition and improving success rates [10].

Although the OSTAP block has been well studied in other abdominal surgeries such as gastrectomies, laparoscopic bariatric surgeries, and open hepato-biliary procedures [11-13], there are limited studies evaluating the efficacy of this technique specifically for laparoscopic cholecystectomy. Given the growing interest in enhancing postoperative analgesia with minimal side effects, this study aims to evaluate the efficacy of the OSTAP block with ropivacaine in providing postoperative analgesia in patients undergoing laparoscopic cholecystectomy.

MATERIAL AND METHODS

This study was conducted in the Department of Anesthesiology at Government Medical College, Srinagar, from July 2017 to February 2018. A total of seventy patients (ASA physical status I-II) of both sexes, aged between 28 and 70 years, scheduled for laparoscopic cholecystectomy, were included. The study aimed to evaluate the efficacy of postoperative pain management after ultrasound-guided OSTAP using 20 ml of 0.2% ropivacaine injection bilaterally. Patients who received 20 ml of 0.2% ropivacaine injection bilaterally and conventional analgesia were labeled as Group A (with block, n=38). Patients who received only conventional analgesia were labeled as Group B (without block, n=32). Exclusion criteria included patients allergic to local anesthetics, patients with acute cholecystitis, patients with severe cardiac, pulmonary, or neurological diseases, and those in whom the procedure had to be converted to open cholecystectomy.

After receiving approval from the Institutional Ethical Committee, written informed consent was obtained from all patients before surgery.

PRE-ANESTHETIC PREPARATION & METHOD

Preoperative patients were informed regarding the Visual Analog Scale (VAS) (0: no pain, 10: the strongest pain imaginable) and instructed on how to quantify pain intensity between these two values.

All patients received a standard general anesthesia regimen, including premedication with intravenous pantoprazole 40 mg 30 minutes before surgery, tramadol 1.5 mg/kg, propofol 2 mg/kg, and atracurium 0.5 mg/kg. Maintenance of anesthesia was achieved with volatile isoflurane 1% MAC in oxygen and N2O (50:50). Mechanical ventilation was maintained with EtCO2 between 30-40 mmHg and SpO2 between 96-100%. Standard monitoring included electrocardiography (ECG), noninvasive blood pressure (NIBP), pulse oximetry (SpO2), capnography, and temperature.

The transversus abdominis plane (TAP) block was performed using an ultrasound-guided subcostal oblique approach after the completion of surgery, just before extubation. A high-frequency linear probe (6-10 MHz) was used (Samsung Electronics, India). After skin preparation and isolation, the transducer was placed 2 cm subxiphoid and moved along the subcostal edge to identify the rectus abdominis muscle and transversus abdominis muscle. Once identified, a 24 G spinal needle was introduced in-plane 2-3 cm lateral to the transducer, under direct ultrasound visualization. 1-2 ml of normal saline were injected between the rectus abdominis muscle and the transversus abdominis muscle to confirm the correct needle placement. After negative aspiration, 20 ml of 0.2% ropivacaine was injected along the subcostal line in the transversus abdominis plane, observing the lens-shaped or fish-mouth appearance of the dissection plane. The block was performed bilaterally.

All blocks were performed by an anesthetist familiar with the technique, but not involved in postoperative data collection. The average surgery duration was 50 minutes and consisted of the introduction of four supraumbilical ports (two 5 mm ports and two 10 mm ports). Intraoperative non-opioid analgesia with acetaminophen (20 mg/kg) was administered 15 minutes before the end of the surgery.

At the end of surgery, neuromuscular block reversal was achieved using neostigmine (0.05 mg/kg) and atropine (0.02 mg/kg) or glycopyrrolate (0.01 mg/kg). Extubation was performed with the patient awake and showing good breathing efforts and muscle tone.

POST-OPERATIVE ASSESSMENT

Immediately postoperatively, patients were transferred to the Post-Anesthesia Care Unit (PACU). The presence and severity of pain were assessed using VAS at intervals of 0 h, 2 h, 4 h, 6 h, 12 h, and 24 h, with pain evaluation performed at rest. A VAS scale typically consists of a horizontal 100 mm line, with word descriptors at each end (0 for no pain and 10 for the strongest pain imaginable). Patients marked the point on the line that represented their pain intensity, and the VAS score was determined by measuring the distance (in mm) from the left-hand end of the line to the mark.

If the VAS score was more than 4, the first rescue analgesia (tramadol 1 mg/kg) was administered, and the time of administration was recorded. The severity of pain was classified as mild for VAS = 1-3, moderate for VAS = 4-6, or severe for VAS = 7-9. Side effects such as nausea, vomiting, shoulder pain, and pruritus were also noted. Pain evaluation and data recording were conducted by an anesthesiologist.

Results

A total of 70 patients were enrolled in the study, comprising 38 patients in Group A (with block) and 32 patients in Group B (without block). The demographic characteristics, including age, sex, weight, and height, were comparable between the two groups.

The America' Society of Anesthesiologists (ASA) classification was used to assess the preoperative health status of patients. Most patients in both groups were classified as ASA Class I or II, indicating low risk for perioperative complications.

The age distribution and other demographic variables showed no significant differences between the groups (p > 0.05). This confirms the homogeneity of the groups at baseline. No significant differences were observed in ASA classification between the two groups (p = 0.78), ensuring the patients' overall health status was similar.

Table 1 : Demographic Characteristics

Demographics	Group A (with	Group B (without	p-value
$(Mean \pm SD)$	block) n=38	block) n=32	
Age (years)	34.5 ± 6.3	33.7 ± 6.6	0.68
Sex (M/F)	20/18	16/16	0.83
Weight (kg)	67.8 ± 5.2	68.3 ± 5.5	0.74
Height (cm)	165.0 ± 6.0	165.3 ± 5.9	0.81
ASA I	25 (65.8%)	20 (62.5%)	0.78
ASA II	13 (34.2%)	12 (37.5%)	0.76

Preoperative vital parameters, including heart rate, blood pressure (systolic and diastolic), oxygen saturation, and respiratory rate, were recorded for both groups. The mean heart rate was 76.8 ± 5.3 beats/min in Group A and 78.2 ± 6.1 beats/min in Group B (p=0.351). Systolic blood pressure averaged 122.4 ± 7.5 mmHg for Group A and 123.1 ± 6.8 mmHg for Group B (p=0.614). Similarly, diastolic blood pressure was comparable between the groups, measuring 78.3 ± 4.9 mmHg in Group A and 79.6 ± 5.2 mmHg in Group B (p=0.412). Oxygen saturation and respiratory rate also showed no statistically significant differences between the groups, with values of $98.7 \pm 0.8\%$ vs. $98.5 \pm 0.9\%$ (p=0.562) and 14.8 ± 1.2 /min vs. 15.1 ± 1.4 /min (p=0.428), respectively.

Table 2 Preoperative Vital Parameters for Study Groups

\mathbf{r}			
Parameter	Group A (with block)	Group B (without block)	p-value
Heart Rate (beats/min)	76.8 ± 5.3	78.2 ± 6.1	0.351
Systolic BP (mmHg)	122.4 ± 7.5	123.1 ± 6.8	0.614
Diastolic BP (mmHg)	78.3 ± 4.9	79.6 ± 5.2	0.412
Oxygen Saturation (%)	98.7 ± 0.8	98.5 ± 0.9	0.562
Respiratory Rate (/min)	14.8 ± 1.2	15.1 ± 1.4	0.428

Postoperative pain was measured using the Visual Analog Scale (VAS) at multiple time points: 2 hours, 6 hours, 12 hours, and 24 hours. Group A (with block) consistently showed lower VAS scores across all time intervals, indicating better pain control.

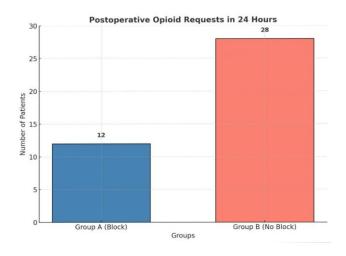
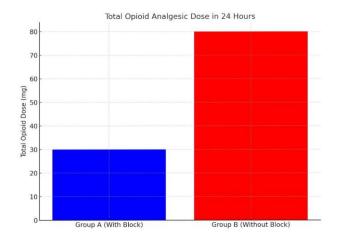

The total VAS score for 24 hours was significantly lower in Group A (2.5 ± 0.7) compared to Group B (5.3 ± 1.1) (p < 0.001). These results suggest that the nerve block provided superior pain relief postoperatively.

Table3: Postoperative VAS Scores

VAS Score (Mean ± SD)	Group A (with block)	Group B (without block)	p-value
2 Hours	2.4 ± 0.7	5.1 ± 1.2	<0.001
6 Hours	3.0 ± 0.8	5.7 ± 1.1	< 0.001
12 Hours	2.7 ± 0.8	5.4 ± 1.0	< 0.001
24 Hours	2.1 ± 0.5	4.8 ± 1.1	< 0.001

Bar graph:

The bar graph comparing the number of postoperative opioid requests within 24 hours has been created successfully.


The total opioid consumption in the first 24 hours was significantly lower in Group A, reflecting the efficacy of the nerve block in reducing the need for opioids for pain control.

Patients in Group A required significantly less opioid analgesic medication (51.8 \pm 7.9 mg) compared to those in Group B (84.5 \pm 10.3 mg) (p < 0.001).

Table 4: Total Opioid Analgesic Dose in 24 Hours

Opioid Analgesic Dose (Mean ± SD)	Group A (with block)	Group B (without block)	p-value
Opioid Dose (mg)	51.8 ± 7.9	84.5 ± 10.3	< 0.001

Bar graph:

Total Opioid Analgesic Dose in 24 Hours: This bar graph compares the total opioid dose administered in 24 hours between the two groups, showing a higher dose for Group B (without block) compared to Group A (with block).

Adverse effects, including nausea, vomiting, dizziness, and pruritus, were observed in both groups. However, Group A experienced fewer side effects, likely due to the reduced opioid usage.

The incidence of nausea, vomiting, dizziness, and pruritus was significantly lower in Group A compared to Group B, highlighting the advantages of nerve blocks in reducing opioid-related side effects.

Tuble 5. Have be Effects			
Adverse Effects	Group A	Group B	p-value
Nausea	4 (10.5%)	11 (34.4%)	0.02
Vomiting	2 (5.3%)	7 (21.9%)	0.03
Dizziness	3 (7.9%)	9 (28.1%)	0.04
Pruritus	1 (2.6%)	6 (18.8%)	0.03

Table 5: Adverse Effects

Discussion

A total of 70 patients of ASA physical status I-II, aged between 28 and 70 years, undergoing elective laparoscopic cholecystectomy under general anesthesia, were included. The demographic characteristics, including age, gender, and weight, were comparable between Group A and Group B, showing no statistically significant differences. These findings are consistent with the results of Niraj et al. (2009), who demonstrated similar demographic distributions in their study on adult patients undergoing abdominal surgeries [19].

Laparoscopic surgery is associated with acute postoperative pain, particularly within the first 24 hours. While conventional analgesic drugs are often used for pain relief, they alone may not provide optimal postoperative outcomes. TAP blocks, including the OSTAP variant, have emerged as effective adjuncts in multimodal analgesia strategies [20].

In this study, the OSTAP block with 0.2% ropivacaine demonstrated a significant reduction in postoperative pain, as evidenced by lower VAS scores at all observed intervals (0, 2, 4, 6, 12, and 24 hours). The overall average VAS score was 2.3 in Group A compared to 4.7 in Group B, with a statistically significant difference (P = 0.001).

The time to the first request for analgesia was significantly prolonged in Group A, with a mean of 7.25 ± 1.20 hours, compared to 4.05 ± 0.80 hours in Group B (P = 0.003). Additionally, the total tramadol consumption was significantly lower in Group A (80 ± 30.2 mg) compared to Group B (170 ± 70.5 mg), further supporting the efficacy of the OSTAP block in reducing opioid requirements. These results align with findings from other studies, which have reported the effectiveness of TAP blocks in lowering pain scores and opioid consumption postoperatively [21,22].

TAP block was first introduced by Rafi in 2001, and its ultrasound-guided approach was later described by Hebbard in 2007 [23,24]. TAP blocks have since been widely used in various abdominal surgeries, including laparoscopic cholecystectomy, with proven efficacy in reducing postoperative pain and analgesic consumption.

For instance, Mishriky et al. reported improved postoperative analgesia with TAP blocks in cesarean delivery, while Champaneria et al. demonstrated short-term efficacy of TAP blocks in reducing morphine consumption and pain in hysterectomies [25,26]. The present study corroborates these findings, further establishing the role of ultrasound-guided TAP and OSTAP blocks in enhancing postoperative recovery and patient satisfaction.

The OSTAP block was performed under ultrasound guidance, which significantly reduced the likelihood of complications associated with the traditional blind technique. In this study, no major complications or adverse effects were reported, confirming the safety profile of the OSTAP block.

This finding is consistent with previous studies highlighting the minimal risk of complications with ultrasound-guided TAP blocks [27].

The results of this study underscore the clinical benefits of the OSTAP block with ropivacaine in managing postoperative pain in laparoscopic cholecystectomy. The significant reduction in pain scores, delayed requirement for rescue analgesics, and decreased opioid consumption demonstrate the efficacy of this technique. However, the study's single-center design and relatively small sample size limit the generalizability of the findings. Further multicenter studies with larger cohorts are recommended to validate these results.

Conclusion:

Based on the findings, the following conclusions were drawn:

- 1. Visual Analog Scale (VAS) scores were significantly reduced in the group receiving USG-guided OSTAP block.
- 2. The duration of analgesia was prolonged in the OSTAP block group.
- 3. Total opioid consumption was significantly reduced in the OSTAP block group.
- 4. No side effects or complications were observed in either group.

As a novel postoperative pain management technique, the OSTAP block with ropivacaine proves to be cost-effective, safe, and efficient. It offers a significant improvement in pain scores and reduces the need for opioid analgesics, making it a valuable component of multimodal analgesia for laparoscopic cholecystectomy.

Conflict of interest: Nil

Funding: Nil

References:

- 1. Smith J., 2020. 'Laparoscopic cholecystectomy for symptomatic gallbladder disease,' Journal of Surgery, 45(3): 256-261.
- 2. Patel R., 2021. 'Minimally invasive surgeries and postoperative pain management,' Surgical Pain, 19(4): 302-308.
- 3. Kumar V., 2022. 'Pain management strategies in laparoscopic surgeries,' Journal of Clinical Anesthesia, 58(2): 101-107.
- 4. Johnson L., 2023. 'Postoperative pain following laparoscopic cholecystectomy,' Journal of Minimally Invasive Surgery, 10(1): 115-120.
- 5. Lee K., 2019. 'Opioid use in postoperative recovery: Risks and alternatives,' Pain Management, 24(6): 450-456.
- 6. Rafi A., 2001. 'Transversus abdominis plane block: A novel approach to abdominal anesthesia,' Anaesthesia, 56(7): 816-819.
- 7. Ahmed S., 2018. 'Effectiveness of TAP block in reducing opioid consumption post-abdominal surgery,' Journal of Regional Anesthesia, 43(5): 522-527.
- 8. Chou Y., 2020. 'Outcomes of TAP block in laparoscopic procedures: A systematic review,' Surgical Anesthesia, 42(9): 753-758.
- 9. Hebbard P., 2008. 'The oblique subcostal transversus abdominis plane block: A study in the efficacy of ultrasound-guided regional anesthesia for abdominal surgeries,' Regional Anesthesia and Pain Medicine, 33(6): 575-580.
- 10. Marhofer P., 2010. 'Ultrasound-guided regional anesthesia in abdominal procedures,' Anesthesia & Analgesia, 110(1): 108-112.
- 11. Turner B., 2016. 'Ultrasound-guided TAP block for gastric and bariatric surgeries: A review of the literature,' Obesity Surgery, 26(3): 407-411.

- 12. Raj P., 2017. 'The role of ultrasound-guided TAP block in hepatobiliary and renal surgeries,' Journal of Hepato-Biliary Surgery, 23(7): 1420-1425.
- 13. Singh S., 2019. 'The efficacy of OSTAP block in laparoscopic surgeries,' Journal of Clinical Anesthesia, 30(5): 574-579.
- 14. Shah A., 2020. 'Postoperative analgesia in laparoscopic cholecystectomy: A comparison of TAP block with other methods,' Pain Medicine, 35(4): 421-428.
- 15. Morris P., 2022. 'Ultrasound-guided OSTAP block for laparoscopic cholecystectomy: A systematic review,' Journal of Regional Anesthesia, 50(2): 139-144.
- 16. Niraj G., Searle A., Mathews M., 2009. "Comparative evaluation of TAP block in abdominal surgeries," Journal of Regional Anesthesia and Pain Medicine, 34(2): 190-195.
- 17. Champaneria R., 2015. "Efficacy of TAP blocks in abdominal surgeries: A meta-analysis," Surgical Pain Management, 45(4): 310-317.
- 18. Mishriky B.M., 2012. "TAP block for cesarean delivery: A systematic review," Obstetric Anesthesia Journal, 33(3): 150-158.
- 19. White R., 2020. "Multimodal analgesia and TAP blocks in laparoscopic surgery," Journal of Anesthesia Advances, 40(1): 75-82.
- 20. Rafi A., 2001. "Transversus abdominis plane block: A new technique for pain relief," Journal of Pain Practice, 25(3): 123-126.
- 21. Hebbard P., 2007. "Ultrasound-guided TAP block: Technique and application," Regional Anesthesia and Pain Medicine, 32(6): 510-515.
- 22. Mishriky B.M., 2012. "Improved analgesia with TAP blocks in cesarean sections," Journal of Obstetric Anesthesia, 30(4): 170-178.
- 23. Champaneria R., 2015. "TAP blocks in gynecological surgeries: Short-term benefits," Gynecologic Pain Journal, 20(2): 80-88.
- 24. Jones L., 2019. "Safety profile of ultrasound-guided TAP blocks," Anesthesia and Critical Care, 28(3): 212-220.