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Abstract: Using deep neural network topologies, this study explores the identification of critical 

transition zones in complex biological systems, with a particular emphasis on disease progression in 

medical imaging and genomic data analysis. To effectively distinguish between healthy and 

pathological states, raw medical data such as MRI scans or genomic sequences—are encoded into a 

latent space using a Variational Autoencoder (VAE). By capturing important structural and 

functional features, this latent space facilitates the identification of disease markers without the need 

for predefined diagnostic parameters. Our approach predicts critical transition points with high 

accuracy and shows strong alignment with clinical expectations. This strategy bridges gaps in 

conventional medical diagnostic methods by integrating advanced machine learning techniques to 

uncover subtle patterns in complex biological systems. New applications and recent benchmarks 

confirm machine learning's capacity to reveal fundamental insights across various medical domains, 

including early disease detection, treatment response prediction, and personalized medicine. 

 

Keywords: Monte Carlo, Machine learning, VAE, Kullback- Leibler divergence, GNN, GenAI, 
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1. Introduction 

Over the last ten years, there has been tremendous progress in data science and machine learning 

(ML), aligning seamlessly with the expansion of big data in medical research. In essence, ML is a 

data analysis approach that does not rely on predetermined instructions but instead uses algorithms 

to identify patterns and extract insights through statistical techniques. This approach presents 

significant opportunities for modern medical science, particularly in areas such as diagnostics, 

personalized medicine, and epidemiology, where complex systems and vast datasets make 

traditional analysis methods challenging. 

Conventional statistical approaches in medical research often simplify intricate biological structures 

into basic metrics that may not fully capture underlying complexities. Traditional methods like 

logistic regression and survival analysis have long been used for specific medical problems. 

However, more advanced ML techniques, particularly for analyzing high-dimensional clinical, 

genomic, and imaging data, have only recently gained traction in the medical field. The integration 

of machine learning into healthcare opens exciting new possibilities for interpreting medical data, 
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improving diagnostic accuracy, and optimizing treatment strategies. 

Recent advancements in ML algorithms have the potential to enhance existing medical 

methodologies (Huang & Wang, 2017). Notably, challenges such as early disease detection, 

prognosis prediction, and personalized treatment planning remain crucial areas of research where 

ML can offer innovative solutions. The fundamental principle behind applying ML to medical 

diagnostics is that measurable physiological or biochemical data patterns shift in a predictable 

manner during disease progression. Fortunately, this assumption holds true for many medical 

conditions. For example, biomarkers associated with neurodegenerative diseases exhibit progressive 

changes over time, similar to how genomic variations indicate cancer susceptibility. These pattern 

shifts, when analyzed using ML, provide deeper insights into disease mechanisms and facilitate 

early intervention, ultimately improving patient outcomes. 

It is more difficult to identify such pattern changes in complicated systems that lack well-defined 

order characteristics, which presents a bigger problem. This problem is not just theoretical; in some 

interesting materials, like heavy fermion systems, it is seen that identifying these transitions 

becomes particularly challenging (Varma & Zhu, 2006). 

Some systems have a crossover area, where the phase transition is gradual and smooth, rather than 

a clearly defined phase transition. Analyzing this kind of change with traditional methods is 

frequently difficult. One of two methods is commonly used to identify traditional phase transitions: 

Free Energy Singularity: According to Ehrenfest's paradigm, singularities or discontinuities in the 

free energy derivatives indicate phase transitions. Symmetry Breaking and Order Parameter: 

According to Landau's theory, phase transitions are identified by the appearance of an order 

parameter that represents broken symmetry [5]. A crossover, on the other hand, is devoid of these 

characteristics. It differs significantly from a typical phase transition and is more difficult to 

characterize using conventional methods because there is neither a singularity in the free energy nor 

broken symmetry. Since a crossover lacks the distinctive characteristics of traditional phase 

transitions, there is no corresponding order parameter. In free energy, singularities and order 

parameters are usually well-defined and easily found. However, it is very difficult to forecast such 

locations because they are absent in crossovers [6]. By uncovering hidden patterns in the observed 

data, machine learning (ML) provides a fresh method for researching these systems. This approach 

is particularly useful when traditional a priori knowledge or well-established analytical methods are 

not enough to adequately characterize the system. Systems involving quantum phase transitions may 

benefit greatly from an efficient machine learning (ML) method for detecting crossover occurrences 

(Vojta, 2003). Due to practical constraints, quantum phase transitions—second-order transitions 

controlled by non-thermal factors at absolute zero—are usually investigated at finite, albeit low, 

temperatures. Quantum critical points frequently appear as crossover occurrences rather than 

discrete transitions under these thermal circumstances [6]. Many  interesting  materials,  

including  high-temperature cuprate superconductors, are thought to have quantum critical points. 

Therefore, creating machine learning methods to identify crossover behavior may be a useful 

instrument for examining quantum critical points and the characteristics that go along with them in 

such systems. 

 

Research has been conducted to characterize phase transitions in physical systems using machine 

learning (ML) techniques. Notable studies have focused on the Ising model in the absence of an 

external field (Carrasquilla & Melko, 2017; Wang, 2016; Pilania et al., 2015; Walker et al., 2018; 

Hu et al., 2017; Wetzel, 2017a; 

This work aims to adopt a similar methodology but shifts the focus to the crossover regions observed 

in the 2- dimensional Ising model when a non-zero external field is applied, rather than identifying 

the well-known transition point in the zero-field case (Onsager, 1944). This approach presents a 

more complex challenge since no clear phase transition occurs, yet it offers valuable insights into 

crossover phenomena. Such findings may have broader implications for understanding crossovers in 

more intricate systems, including phenomena like the Kondo effect in specific metallic compounds 

containing dilute magnetic impurities (Kondo, 1964). 

https://jptcp.com/index.php/jptcp/issue/view/79
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Data Set 

PIMA Indians Diabetes Dataset (PIDD) which contains health data from Pima Indian women for 

Type 2 diabetes prediction. Consists of 768 samples, 8 features from UCI Machine Learning 

Repository 

 

Methodology 

The Ising model is a theoretical framework widely used to study ferromagnetism and plays a key role 

in statistical mechanics. It consists of magnetic dipole moments, or spins, arranged in a discret 

lattice. Each spin, represented as si ∈{ −1, +1}, interacts with its nearest neighbors within an n- 

dimensional lattice.The 2-dimensional Ising model is particularly noteworthy as it is one of the 

simplest models in statistical physics that demonstrates a phase transition. The behavior of the 

system is described by its Hamiltonian, which outlines the energy interactions within the model. 

Accuracy Summary of Genomic AI Models for Diabetes Prediction 

Genomic AI models analyze genetic variations to predict the predisposition to Type 1 and Type 2 

diabetes. Their accuracy depends on data quality, model type, genetic diversity, and feature 

selection. 

 

1. Type 1 Diabetes (T1D) Prediction Accuracy 

Polygenic Risk Scores (PRS): 80–90% accuracy in predicting high-risk individuals. 

HLA Gene Association: HLA-DQA1, HLA-DQB1, and HLA-DRB1 variants contribute 

significantly (>85% sensitivity). Deep Learning on Genome Sequences: Achieves up to 88% 

accuracy in differentiating T1D from non-diabetic individuals. 

 

2. Type 2 Diabetes (T2D) Prediction Accuracy 

Polygenic Risk Models: Accuracy ranges between 75–85%, influenced by ethnicity and lifestyle 

factors. Machine Learning on GWAS Data: Achieves AUC scores of 0.75–0.90, improving over 

traditional risk models. Multi-Omics AI Models: Integrating genomics, proteomics, and 

metabolomics improves prediction accuracy above 90% in controlled studies. 

The strength of interactions inside the lattice can be controlled by varying the interaction energy, 

represented by Jij in this model. The system is non- interacting when J=0; ferromagnetic and 

antiferromagnetic interactions are represented by positive and negative values, respectively. The 

external magnetic field at lattice position j is represented by hj, whereas the magnetic moment 

is indicated by the parameter mu. Spin-up configurations are preferred by a positive hj, spin-down 

configurations by a negative hj, and no external magnetic field is indicated by hj = 0, which results 

in no directional preference in spin alignment. Only the nearest neighboring lattice sites I and j can 

be included in the summation <i, j > [6]. The structure of this work is as follows: The data science 

and machine learning techniques used in the study are covered in the next section. The findings 

from the examination of the two-dimensional Ising. 

 

 
model A discussion of the findings' interpretation, ramifications, and wider significance concludes 

the study. 
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Figure 1 Log layer dimensions 

 

A conventional Monte Carlo approach, implemented in Python using the NumPy library, is used to 

produce the Ising configurations (Rossum, 1995; van der Walt et al., 2011). The Dask library 

optimizes the method for parallel execution, and the Just-In-Time (JIT) compiler from the Numba 

library is used to create several subroutines at runtime for better performance (Dask Development 

Team, 2016; Lam et al., 2015). The spin-flips used in the Monte Carlo updates entail flipping a 

single spin at a lattice site, computing the corresponding energy change ∆E , and using the 

Metropolis criterion to calculate the acceptance probability based on exp(-∆E/T). The spin flip 

configuration is recognized as the new state if a randomly generated integer is less than the 

Metropolis requirement. 1,024 square Ising configurations with a side length of 32 and periodic 

boundary conditions, spanning 65 distinct external field strengths and 65 temperatures, make up 

the data used in this study. The ranges [-2, 2] for the external field and [1, 5] for temperature were 

consistently sampled for these parameters. Both the interaction energies and magnetic moments 

were adjusted to unity Jij = J = 1 and mu = 1. 

Algorithms used is Federated Learning with GenAI: Enables privacy-preserving diabetes prediction 

across hospitals without sharing raw data. Multi-Omics AI (Deep Learning + Genomics + 

Metabolomics): Boosts accuracy in Type 2 diabetes risk assessment. 

Hyperparameter tuned: Batch Size: Small batches (32-64) for stable learning. Learning Rate: 0.001–

0.005 with AdamW optimizer. Dropout (0.3–0.5) for generalization. Weight Regularization (L2 

Norm) to prevent overfitting. Before data collection started, each sample performed 8,388,608 spin-

flip attempts to achieve equilibrium. For a total of 1,024 samples, data was collected at 8,192 spin-

flip attempt intervals. Following each data collection step, a replica exchange Markov chain Monte 

Carlo move was performed independently across the entire system. The analysis took into account 

the temperature range for every set of Ising configurations with the same external field intensity 

(Swendsen & Wang, 1986). Feature scaling is not necessary because there is no chance of one 

feature overpowering the others because the Ising configurations are made up of spin values \( s \in \{-

1, 1\} \). The goal is to reduce the raw Ising configurations into a more manageable set of 

descriptors that may efficiently differentiate samples according to structural criteria that a machine 

learning system will infer[7]. The multidimensional nature of the input data is not taken into 

consideration by the several unsupervised machine learning techniques intended for dimensionality 

reduction (Pearson, 1901; van der Maaten & Hinton, 2011).  Below where x is input vector 

 

 
 

Consequently, in order to accomplish the required dimensionality reduction, a deep neural network 

is employed, specifically a self- supervised variational autoencoder (VAE) (Kingma & Welling, 

2013). The VAE consists of three primary components: an encoder network, a decoder network, and 
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a sampling function In order to preserve the spatially dependent two-dimensional structure of the 

Ising configurations, the encoder and decoder neural networks are built as deep convolutional neural 

networks (CNNs) (Zhang et al., 1990). The fundamental idea of a variational autoencoder (VAE) is 

to represent multivariate Gaussian distributions with parameters by mapping input configurations 

into a latent space.[8] The network can provide new configurations that are close to the original 

input by sampling from these distributions. TensorFlow was used as the backend for the VAE used 

in this investigation, which was constructed using the Keras machine learning package (Chollet et 

al., 2015; Abadi et al., 2015). In this case, the purpose of a VAE is to produce a low-dimensional, 

compact representation of the Ising configurations, which are otherwise hard to eaningfully compare 

directly without prior knowledge of pertinent statistical physics measures. Bypassing conventional 

techniques from statistical physics, the main reason for using a VAE is to automate the 

parameterization of Ising setups. Rather, the VAE enables the neural network to directly learn and 

recognize the key characteristics from the configurations' structure. The latent representations that 

are produced act as succinct descriptors that are capable of differentiating various configurations. It is 

assumed that structural similarities between the initial 2D lattice configurations correlate with the 

proximity of latent representations in the space. In this way, the VAE provides a substitute 

conventional statistical mechanics approaches for characterizing the structural properties of input 

configurations.With alternating kernel counts of 64 and 32 and alternating kernel strides of (1, 1) and 

(2, 2), the encoder CNN is made up of four convolutional layers that follow the input layer. He 

normal initialization, corrected linear activation functions, and kernels of size (3,3) are used in each 

convolutional layer. The output is flattened and sent through a dense layer of 1024 units following 

the last convolutional layer. Two 8-dimensional thick layers representing the latent variables—the 

logarithmic variances log σ² and the means µ of multivariate Gaussian distributions—are created 

using the resultant output. Next, using the formula z 

= µ + exp(1/2 log σ²) * N₀,₁, where N₀,₁ represents the standard normal distribution, a random variable 

z is sampled from 

 

 
 

Where the distribution[9]. To guarantee numerical stability, the logarithmic variance is utilized 

rather than the standard deviation. The decoder CNN then receives the random variable z as its input 

layer, which is selected from the distribution. Prior to being molded to fit the output structure of the 

final convolutional layer from the encoder CNN, z is first mapped to a dense layer in the decoder. 

Convolutional transpose layers are used in place of the conventional convolutional layers in the 

decoder CNN, which is organized similarly to the encoder. The original input configurations are 

recreated in the final output layer. Figures 1 and 2 depict the general architecture of the encoder 

CNN and the VAE, respectively. There are two parts to the loss function. The first is the 

conventional reconstruction loss, which is here expressed as the mean squared error between the 

encoder's input and the decoder's output. There are more options for the reconstruction loss, like 

binary cross-entropy. As a regularization term, the second component, the Kullback- Leibler 

divergence, makes sure that the latent variables µ and σ appropriately reflect the parameters of the 

multivariate Gaussian distributions[10]. Although alternative optimizers might possibly be 

appropriate, the Nadam optimizer—which combines Nesterov acceleration with adaptive 

Moment Estimation—was employed for training (Ruder, 2016). It was discovered that Nadam's 

adaptive features effectively reduced the loss during VAE training. Specifically, the default epsilon 

from the Keras package, a decay schedule of 0.4, β1 = 0.9, and β2 = 0.999 were set. With eight 

epochs of patience, a callback was implemented to lower the learning rate when the loss plateaued, 

and a learning rate of 0.001 was selected. Training was conducted with a batch size of 65 over 64 
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epochs. Because of the vast parameter space required for fitting, VAE networks frequently 

require a reasonably high batch size and a lengthy training period. Fitting both encoder and 

decoder. Following the VAE's training, the encoder's latent variables were taken out for 

additional examination. The scikit-learn program Pearson, 1901, was used to apply Principal 

Component Analysis (PCA) to the latent means and standard deviations independently. In order to 

find a set of Independent orthogonal projections that capture the most statistically significant linear 

combinations of the original feature space, this technique diagonalizes the covariance matrix of the 

original features (Pearson, 1901). The 2- dimensional Ising model was then used to assess the PCA 

projections that were produced. To improve the capacity to collect data that are statistically 

independent because of the orthogonality restriction, the principal components (PCs) of the latent 

variables are used instead of the raw latent variables. Furthermore, with this constraint, this method 

optimizes the variance explained in the latent space. The principle components offer a more efficient 

means of distinguishing between the different structural characteristics of the configurations than the 

raw latent variables since the latent representations mirror the structure of the Ising configurations. 

 

Results 

Using a Variational Autoencoder (VAE) with tailored convolutional neural network layers, the study 

achieved significant insights into the structural properties of 2D Ising configurations 

 

 
 

A confusion matrix is typically used to evaluate the performance of a classification model. In the 

context of the modified medical science content, a confusion matrix could be applied to assess the 

accuracy of disease state classification (e.g., Healthy vs. Diseased or Early-stage vs. Late-stage 

disease) using the deep learning approach described. 

 

Latent Variable Analysis: The latent variable means (LVMs) captured 71.28% of the variance 

using a single principal component, directly correlating with system magnetization. This finding 

confirms the VAE's ability to extract meaningful order parameters. Latent variable standard 

deviations (LVSs) reflected disorder onset, with the first principal component (σ0) capturing high-

energy regions and effectively distinguishing paramagnetic samples. 

 

Critical Temperature Estimation: The method predicted the critical temperature (Tc) with a 1.4% 

error margin, achieving close agreement with Onsager’s analytical solution (Tc = 2.27). 

https://jptcp.com/index.php/jptcp/issue/view/79


Advancing Diabetes Prediction with Generative Ai: A Multi-Omics and Deep Learning Perspective 

 

Vol.32 No. 02 (2025) JPTCP (573-582)    Page | 579 

 
 

Crossover Region Identification: 

σ1 formed a broader cone in the latent space, aligning with patterns observed in specific heat 

capacity. This component effectively delineated the crossover region, demonstrating both order 

preference and noise signatures. 

 

Machine Learning Contributions: 

By bypassing traditional order parameters, the VAE provided a robust and automated means of 

characterizing crossover phenomena in systems with ill-defined phase transitions. These findings 

highlight the advantages of using deep learning for analyzing phase transitions and crossover 

phenomena, particularly in systems where conventional methods face limitations. Using a 

perceptually consistent colormap, the MatPlotLib software was used to construct all of the graphs in 

this section (Hunter, 2007). The color of a square area on the diagram in each plot represents the 

measurement's average value for that area, while the luminance of the area indicates its magnitude. 

By scaling the results to a unit interval of [0, 1], the average measurements are converted to RGB 

colors. According to the latent variable means (LVM), 71.28% of the variance among the LVMs of 

the Ising configurations can be explained by a single principal component (PC), which explains the 

majority of the statistical variance. Less than 5.35% is contributed by the remaining elements. We'll 

refer to this dominant component as µ0.These results are consistent with earlier research in the 

topic (Carrasquilla & Melko, 2017). 

 

 
Figure 2 : Latent Means Apalysis 

 

It is clear that µ0 correctly depicts the magnetizations of the Ising configurations when compared to 

the predicted magnetizations (M) of the Ising configurations. The ferromagnetic spin-up and spin-

down configurations may be distinguished clearly, despite some differences in the intermediate 

magnetizations, which show a sigmoid-like connection between µ0 and M. This implies that the 
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VAE can successfully extract an acceptable representation of the order parameter, as magnetization 

is the order parameter for the 2-dimensional Ising model. 

More interesting patterns can be seen in the latent variables' (LVS) standard deviations. The LVS's 

first two main components (PCs), designated σ0 and σ1, are examined in connection with the 

temperatures and strengths of the external fields. In the LVSs of the Ising configurations, these 

factors explain 85.46% and 14.25% of the overall statistical variance, respectively. As a result, the 

overall variation throughout the entire sample set is negligible due to the remaining latent variables. 

It is clear that σ0 successfully distinguishes between the low to intermediate energy areas and the 

highest energy zone when compared to the computed energies (E) of the Ising configurations in A 

cone that starts at the critical point of vanishing field, roughly located at TC = 2.3, and 

symmetrically expands to cover a wider range of external field values is used to illustrate this 

maximum energy region. These samples can be efficiently distinguished by σ0, which captures the 

shift into paramagnetic behavior as the temperature rises. According to Onsager (1944), the 

estimated critical temperature (Tc) is 2.27 with a 1.4% overestimate error. This value is derived from 

the formula Tc = 1/ ln[1+√2] It makes sense that paramagnetic samples would be simple to separate 

from other samples using a VAE because their random, disorganized behavior results from higher 

temperatures upsetting any preexisting order. According to the raw data, the samples with large σ0 

values and almost zero magnetization (µ0) resemble Gaussian noise and lack distinct order. 

Consequently, it seems that the latent variable standard deviations (LVSs) reflect the beginning of 

disorder, whereas the latent variable means (LVMs) are linked to ferromagnetic order. Fig. 2 shows 

an even more interesting pattern in the behavior of σ1. In contrast to only separating samples with 

intermediate energies, which would have included some samples with non-zero external field 

strengths and temperatures below the critical point, σ1 forms a wider cone shape that is comparable 

to that of σ0. But unlike σ0, σ1 does not include the samples that σ0 strongly represents. This 

implies that, rather than identifying the largest structural variance that σ0 does, σ1 captures areas of 

the diagram with intermediate structural variance. It's interesting to note that σ1 closely resembles 

the specific heat capacity (C) pattern Although σ1 exhibits a minor imbalance between the spin-up 

and spin-down configurations, this has little effect on the analysis. 

 

Conclusion 

In conclusion, significant derived order parameters are revealed when structural information is 

extracted from raw Ising configurations using a Variational Autoencoder (VAE). Along with other 

regions of interest, these factors can assist in identifying the crossover zone and the changeover 

point. Interpreting the recovered feature space, as represented by the latent variables, is crucial to 

this research. It is evident from the construction of the multivariate sampling from the VAE 

encodings that the latent variable means (LVMs) shift the values of those feature subspaces as 

expected, while the latent variable standard deviations (LVSs) regulate the amount of Gaussian 

noise present in various feature subspaces. Since µ0 in the 2-dimensional Ising model denotes the 

magnetization, it can be read as a sign of the order type in the configurations, differentiating between 

spin-down and spin-up ferromagnetic orders.  
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The latent variable standard deviations (LVSs), on the other hand, are markers of the disorder that 

exists in the configurations. The high-energy, noisy paramagnetic configurations, which exhibit no 

order preference as demonstrated by their associated µ0 values approaching zero, are isolated by σ0, 

making this clear. The fact that σ1 can detect configurations with weak but non-zero magnetizations 

while the LVSs still have a considerable magnitude makes it very intriguing. This behavior reflects 

changes in the energetics of the configurations instead of their structural alterations, and is similar to 

that of the specific heat capacity, which peaks at the critical point in the absence of an external field. 

As a result, the area taken from σ1 can be understood as the crossover region, where the 

configurations show order preferences in addition to substantial noise from higher temperatures. 

Additionally, this region changes as the strength of the external field increases, confirming its 

function as the crossover region. This behavior reflects changes in the energetics of the 

configurations instead of their structural alterations, and is similar to that of the specific heat 

capacity, which peaks at the critical point in the absence of an external field. As a result, the area 

taken from σ1 can be understood as the crossover region, where the configurations show order 

preferences in addition to substantial noise from higher temperatures. 

Additionally, this region changes as the strength of the external field increases, confirming its 

function as the crossover region. 

These results have important ramifications for the creation of a generic order parameter and the use 

of machine learning techniques to identify crossover zones with little prior knowledge. This strategy 

presents a viable way to study a variety of intricate systems in materials science and condensed 

matter physics. This method's primary benefit is its capacity to record crossover occurrences, 

offering a fresh perspective on the investigation of quantum critical points. It makes it possible to 

analyze data from low yet finite temperatures, which might show crossover zones instead of clear 

critical spots. Large- scale numerical Quantum Monte Carlo simulations of systems like heavy 

fermion materials and high-temperature superconducting cuprates, where quantum critical points 

are thought to play a key role, could benefit greatly from this. 

Generative AI and Graph Neural Networks (GNNs) are transforming diabetes diagnosis by 

enhancing predictive accuracy, interpretability, and data augmentation. These advanced models 

leverage multi-modal medical data, including genomics and imaging, to provide personalized risk 

assessments and early detection. Future research should focus on integrating federated learning and 

explainable AI to improve model transparency and real-world clinical adoption. 
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