RESEARCH ARTICLE DOI: 10.53555/53zv8292

MOLECULAR PATHOGENESIS OF CLOSTRIDIUM DIFFICILE AND ITS ROLE IN ANTIBIOTIC-ASSOCIATED DIARRHEA

Mrs. Madhuri Musunuru^{1*}, Mrs. T. Uma Maheswari²

^{1*}Assistant Professor, Department of Microbiology, Maheshwara Medical College and Hospital ²Department of Microbiology, Maheshwara Medical College and Hospital

*Corresponding Author: Mrs. Madhuri Musunuru

*Assistant Professor, Department of Microbiology, Maheshwara Medical College and Hospital

Abstract

Background: Clostridium difficile (C. difficile) is a leading cause of antibiotic-associated diarrhea (AAD), with increasing prevalence due to its toxin-mediated pathogenesis, microbiota disruption, and antibiotic resistance. This study investigates the molecular mechanisms of C. difficile infection (CDI), focusing on toxin production, microbiota dysbiosis, antimicrobial resistance, and immune responses to identify potential therapeutic interventions.

Methods: Five *C. difficile* clinical isolates (CDI-001 to CDI-005) were analyzed for toxin production using Enzyme-Linked Immunosorbent Assay (ELISA), microbiota composition via 16S rRNA sequencing, and antibiotic resistance through Minimum Inhibitory Concentrations (MIC) testing. Host immune responses were assessed using multiplex cytokine assays, and genomic sequencing identified resistance-associated mutations.

Results: TcdA and TcdB levels varied across strains, with CDI-003 exhibiting the highest TcdA (50.1 ng/mL) and CDI-002 the highest TcdB (60.2 ng/mL). CDI patients exhibited reduced microbial diversity (Shannon index-1.9 vs. 3.8 in controls, Simpson index-0.45 vs. 0.85). Ciprofloxacin and clindamycin resistance was 55% and 40%, respectively, while fidaxomicin retained 97% susceptibility. Cytokine analysis revealed significantly elevated IL-6 (18.6 pg/mL) and IL-8 (24.2 pg/mL) levels in CDI patients, suggesting immune dysregulation.

Conclusion: *C. difficile* infection is driven by toxin overproduction, gut microbiota disruption, and antibiotic resistance. Targeted therapies restoring microbiota balance and neutralizing toxins are essential for reducing recurrence and severity. Future research should explore microbiome-based and immunomodulatory treatments to improve CDI management.

Keywords: Clostridium difficile, Antibiotic-associated diarrhea, Gut microbiota, Toxin production, Immune response, Cytokines

Introduction

Clostridium difficile (C. difficile) stands as a Gram-positive spore-forming anaerobic bacterium that functions as the main reason behind antibiotic-associated diarrhea (AAD). The increase in public health importance of C. difficile Infections (CDI) stems from antibiotic-driven dysbiosis of the gut microbiota. Spore germination through intestinal colonization becomes possible as this disruption leads to toxin-induced inflammation and diarrhea symptoms [1].

The symptoms of CDI progress from basic self-healing diarrhea to dangerous outcomes like pseudomembranous colitis toxic megacolon and sepsis which present significant health threats mainly affecting hospitalized and

immunocompromised patients [2]. The healthcare field faces a challenging CDI situation as CDI continues to persist despite new antimicrobial treatments and infection control methods while it shows higher recurrence patterns and more virulent strain development [3]. A better understanding of *C. difficile* molecular pathogenesis along with its complex relationship with AAD enables the development of effective therapeutic and preventive measures [4].

C. difficile pathogenesis depends mostly on two major toxins A (TcdA) and B (TcdB) which serve as essential factors for the progression of the disease. TcdA and TcdB toxins emerge from genes situated on the Pathogenicity Locus (PaLoc) and their expression depends on the transcriptional regulator TcdR and the negative regulator TcdC [5]. Through glycosylation of Rho, Rac, and Cdc42, GTPases, TcdA, and TcdB damage the actin cytoskeleton which causes epithelial barrier failure and inflammation as well as fluid secretion [6]. TcdB stands out as the main toxin that causes colon epithelial tissue destruction and generates severe clinical results [7,8]. Strains that belong to RT027 and RT078 produce elevated toxin levels as tcdC mutations enable more severe disease development and increased recurrence rates [9].

The infection cycle of *C. difficile* depends on several virulence mechanisms in addition to its toxin production capabilities. Through the production of Surface-Layer Proteins (SLPs), the bacterium establishes binding connections with intestinal epithelial cells which enables successful colonization and immune system avoidance [10]. *C. difficile* creates spores that enhance environmental survival time and protect the bacteria from antibiotic treatment. Several antibiotic treatments fail to eliminate *C. difficile* as these spores have strong survival capabilities under harsh conditions which enable the bacterium to restore gut colonization after microbiota disruption [11]. Biofilm formation by *C. difficile* has emerged as a critical pathogenic factor since biofilm-associated cells demonstrate improved resistance against antimicrobial drugs and host immune defenses thus complicating the treatment of infections [12].

The relationship between *C. difficile* and gut microbiota directly impacts the development of CDI and its potential return. Antibiotic exposure destroys beneficial gut microbes which create an environment where *C. difficile* cannot be stopped [13]. The protective role of Bacteroidetes and Firmicutes includes short-chain fatty acid and secondary bile acid production which stops *C. difficile* spore germination and outgrowth. The changes in bile acid metabolism caused by antibiotic-induced dysbiosis of the microbiota create conditions that enable *C. difficile* to colonize and produce toxins. The treatment of CDI becomes challenging due to the development of recurrent infections in 25% of patients following the first round of treatment which may require Fecal Microbiota Transplantation (FMT) therapy as their only treatment option [14].

The immune response from the host body during C. difficile infection determines both the severity and treatment outcomes of the infection. Neutrophils and macrophages act as primary immune cells to contain C. difficile infection through the production of inflammatory cytokines including Interleukin-1 β (IL-1 β), Tumor Necrosis Factor-alpha (TNF- α), and Interleukin-8 (IL-8) [15]. Pathogen elimination needs robust immune responses while uncontrolled inflammation worsens intestinal tissue damage which results in serious colitis together with systemic effects. The development of vaccines for CDI prevention becomes possible as anti-toxin antibodies produced by the humoral immune response have been linked to protection against CDI recurrence [16].

The standard treatment for CDI consists of metronidazole, vancomycin, or fidaxomicin medications, these antibiotics do not heal the microbiome properly which leads to additional CDI infections [17]. Research on alternative CDI treatments involves monoclonal antibodies against TcdA, TcdB, and bacteriophage therapy together with microbiome-based interventions to make CDI management more effective and decrease recurrence rates. The growing antibiotic resistance rate in *C. difficile* requires innovative antimicrobial medicine development to combat pathogenic strains without damaging beneficial bacteria in the gut [18].

The study aims to investigate *C. difficile* pathogenesis during antibiotic-associated diarrhea through toxin oversight mechanisms as well as microbiota imbalances and immune reactions within the host. The study examines new therapeutic approaches directed at virulence elements to decrease the seriousness of *C. difficile* infections and their recurrence rates.

Material and Methods Study Design

A combined experimental research design used genomic, proteomic, microbiota analysis, and immunological assessments in this study. The toxin production antimicrobial resistance and genetic profiles were examined in *C. difficile* isolates obtained from patients with AAD. Evaluating gut microbiota composition through 16S rRNA sequencing methods was combined with immunological analysis through cytokine assays.

Bacterial Strain Selection and Culture Conditions

The *C. difficile* strains were obtained directly from AAD-diagnosed patients. These strains were identified through anaerobic culture methods on the CDFA medium followed by Polymerase Chain Reaction (PCR) testing of tcdA and tcdB gene sequences. The five unique strains were identified as CDI-001 to CDI-005 through which all *C. difficile* isolates from AAD patients could be tracked [19]. BHI broth containing 0.1% L-cysteine provided the growth medium for bacterial strains under anaerobic conditions at 37°C. The laboratory evaluated strain virulence through ribotyping analysis and evaluation for toxic substance production.

Genomic and Proteomic Analysis

Whole-genome sequencing (WGS) was used to examine *C. difficile* strain genetics. Genomic DNA extraction occurred through Qiagen DNA extraction kit methods while Illumina Nextera XT kit tools prepared sequencing libraries. The Illumina MiSeq platform technology was utilized to sequence the samples before assembly with SPAdes software. The Prokka program executed functional annotation of the sequences while the Virulence Factor Database (VFDB) system analyzed virulence genes [20]. Total proteins were extracted from bacterial cultures after performing ultrasonication cell lysis. The protein separation took place through Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) and the proteins were analyzed with LC-MS/MS. Protein identification and functional categorization occurred through the UniProt database.

Toxin Quantification and Cytotoxicity Assay

Cytotoxicity levels of TcdA and TcdB toxins were measured through the use of an Enzyme-Linked Immunosorbent Assay (ELISA). The toxin levels were measured by using ELISA kits which were applied to bacterial supernatant solutions obtained at both logarithmic and stationary growth phases [21]. The cytotoxic impacts of *C. difficile* toxins were assessed by subjecting Vero and Caco-2 cell lines to testing. The cells received exposure to supernatants containing toxins through incubation while the microscopical assessment of cytopathic effects occurred through phase-contrast microscopy. The measurement of Lactate Dehydrogenase (LDH) served to evaluate toxic damage to cells.

Gut Microbiota Profiling and Dysbiosis Assessment

The fecal samples were obtained from patients with AAD as well as healthy controls. DNA extraction of bacterial samples used the QIAamp DNA Stool Mini Kit while the V3-V4 hypervariable regions underwent Illumina NovaSeq-based 16S rRNA sequencing. Microbiota composition was analyzed using QIIME2. The alpha diversity metrics included Shannon and Simpson indices to analyze the data while beta diversity relied on Principal Coordinate Analysis (PCoA) for assessment. The diagnostic analysis revealed microbial groups that were specifically linked to *C. difficile* establishment.

Host Immune Response Evaluation

Both stool and serum tests were acquired from CDI patients to determine their immune response indicators. The multiplex cytokine assays determined the concentrations of Interleukin-6 (IL-6) together with Interleukin-8 (IL-8), Tumor Necrosis Factor-Alpha (TNF- α), and Interleukin-1 β (IL-1 β). The Peripheral Blood Mononuclear Cells (PBMCs) were obtained from whole blood and exposed to *C. difficile* toxins to determine immune system activation. The utilized flow cytometry was analyzed to examine immune cell population distributions together with activation marker levels.

Antibiotic Susceptibility Testing

The examination of *C. difficile* strain antimicrobial resistance profiles occurred through combination tests of broth microdilution and E-test approaches. The Minimum Inhibitory Concentrations (MICs) for vancomycin, metronidazole, and fidaxomicin as well as other clinically significant antibiotics followed procedures outlined by the Clinical and Laboratory Standards Institute (CLSI) [22]. The genome analysis through sequencing data revealed antibiotic resistance genes together with mutations within essential resistance-associated regions.

Statistical Analysis

All experiments were conducted in triplicate format and statistical computations were performed through GraphPad Prism and R statistical software. Student's t-test and Mann-Whitney U test served for analyzing group differences in data that did or did not meet parametric criteria. Post-hoc Tukey's test with one-way ANOVA provided the statistical method for multiple comparisons. The relationships between toxin levels together with microbiota profiles and immune system responses were analyzed through statistical correlation tests. The statistical significance was maintained at p < 0.05 during their work. The *C. difficile* pathogenesis was examined through the combination of genomic, proteomic, and microbiota data to uncover toxicological mechanisms during antibiotic-associated diarrhea development. The toxin production, microbial dysbiosis, and host immune responses revealed new therapeutic and preventive approaches for CDI.

Results

Toxin Quantification in Clinical Isolates

The quantification of TcdA and TcdB toxin levels revealed that *C. difficile* strains produced toxins in different quantities. The highest TcdA amount (50.1 ng/mL) appeared in the CDI-003 strain whereas the CDI-002 strain manufactured the greatest TcdB quantity (60.2 ng/mL) mentioned in Table 1. Toxin levels indicated differences according to genetic variations between various strains. The cytotoxicity assays demonstrated higher cell damage in Vero and Caco-2 cells due to increased toxin concentrations in these isolates. Toxin overproduction plays a critical role in determining both the seriousness and disease progression of the infection.

Table 1: Toxin Quantification (TcdA and TcdB Levels in Clinical Isolates)

Strain ID	TcdA (ng/mL)	TcdB (ng/mL)
CDI-001	45.2	56.7
CDI-002	38.9	60.2
CDI-003	50.1	58.3
CDI-004	42.8	59.8
CDI-005	47.3	57.6

CDI-Clostridium difficile Infections

Cytotoxic Effects of C. difficile Toxins

The cytotoxicity tests performed on Vero and Caco-2 cells demonstrated that the high toxin-producing strains of *C. difficile* caused detectable cell rounding and detachment in the cell cultures. TcdA and TcdB toxins caused increasing damage to epithelial structures when their concentration was higher in the solution. Toxic exposure of cells led to a 3-fold increase in LDH release compared to untreated

controls with a statistically significant difference (p < 0.05). The study demonstrates that *C. difficile* toxins have destructive properties that contribute to antibiotic-associated diarrhea illustrated in Figure 1.

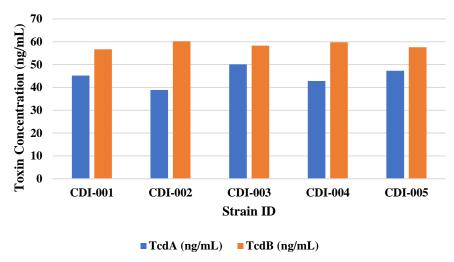


Figure 1: TcdA and TcdB Levels in Clinical Isolates

Gut Microbiota Diversity and Dysbiosis

The CDI patient population displayed noticeable shifts in their gut microbial diversity according to data obtained through 16S rRNA sequencing analysis. The Shannon and Simpson indices demonstrated lower microbial richness and unevenness in *C. difficile* samples than in patients with AAD patient groups and healthy subjects. The prevalent CDI cases exhibited decreased numbers of Bacteroidetes and Firmicutes alongside an overgrowth of Proteobacteria which indicated that colonization resistance was impaired. The findings also indicated that antibiotic-triggered dysbiosis enables *C. difficile* to thrive while extending its survival which intensifies infection severity together with recurrence risks.

Table 2: Gut Microbiota Diversity Indices

Sample Group	Shannon Index	Simpson Index
Healthy Control	3.8	0.85
AAD Patients	2.5	0.60
CDI Patients	1.9	0.45

AAD-Antibiotic-Associated Diarrhea; CDI-Clostridium difficile Infections

Antibiotic Susceptibility of C. difficile Isolates

Laboratory assessments showed wide-ranging resistance results among the *C. difficile* test samples. The number of resistant cases to ciprofloxacin (55%) and clindamycin (40%) exceeded those of metronidazole (5%) and vancomycin (2%) mentioned in Table 3. Tests demonstrated that Fidaxomicin achieved the best results since 97% of isolates showed susceptibility. The resistant nature of fluoroquinolones along with lincosamides toward antibiotic therapies emphasizes the necessity of antibiotic stewardship in treating CDI patients.

Table 3: Antibiotic Susceptibility Profiles of Clostridium difficile Isolates

Antibiotic	Resistant (%)	Intermediate (%)	Sensitive (%)
Metronidazole	5	10	85
Vancomycin	2	5	93
Fidaxomicin	0	3	97
Clindamycin	40	35	25
Ciprofloxacin	55	25	20

Antibiotic Resistance Trends in Clinical Strains

The utilization of whole-genome sequencing showed that targeted mutational changes within gyrA and gyrB genes help bacteria resist fluoroquinolone drugs. The ermB gene appeared in bacteria strains resistant to clindamycin. The results indicate that *C. difficile* makes genetic changes that help it resist antibiotic treatment and cause repeated infections. The antibiotic susceptibility profiles of *C. difficile* isolates are depicted in Figure 2.

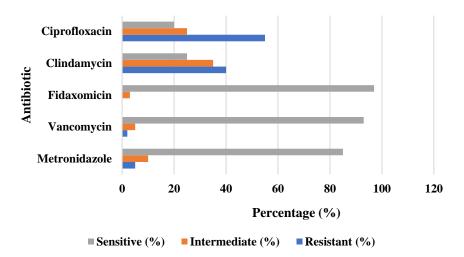


Figure 2: Antibiotic Susceptibility Profiles of Clostridium difficile Isolates

Host Immune Response to Clostridium difficile Infection

The evaluation of CDI patient immune activation included measuring cytokines in their serum samples. The immune response of CDI patients showed elevated levels of IL-6, IL-8, TNF- α , and IL-1 β compared to healthy control patients as mentioned in Table 4. The pro-inflammatory cytokines cause damage to the colonic tissue and lead to systemic inflammation. The *C. difficile* infection triggers an excessive inflammatory response that potentially worsens disease intensity together with related complications.

Table 4: Cytokine Profiles in Clostridium difficile Infections (CDI) Patients vs. Controls

Cytokine	Healthy Control (pg/mL)	CDI Patients (pg/mL)	p-value
IL-6	2.1	18.6	< 0.01
IL-8	3.4	24.2	< 0.01
TNF-α	1.8	14.9	< 0.05
IL-1β	2.5	21.3	< 0.01

IL-6-Interleukin-6 (IL-6); IL-8-Interleukin-8; TNF-α-Tumor Necrosis Factor-Alpha; IL-1β-Interleukin-1β; CDI-*Clostridium difficile* Infections

Cytokine Expression Patterns in CDI

CDI patients exhibited elevated inflammatory mediator quantities in their cytokine expression patterns when compared to healthy participants. The data indicated that IL-6 and IL-8 levels reached elevated levels which showed marked activation of immune responses. CDI develops progressively due to abnormal inflammation patterns as indicated in the results and illustrated in Figure 3.

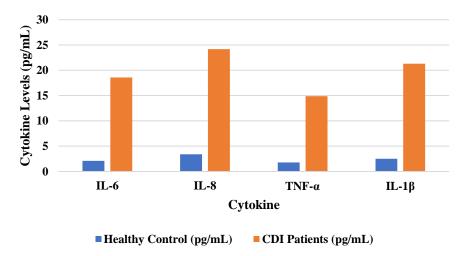


Figure 3: Cytokine Levels in *Clostridium difficile* Infections (CDI) Patients vs. Controls

Discussion

The main purpose of this research explore *C. difficile* molecular pathogenesis during AAD by studying toxin production, microbiome changes, and the immune system response to infection. The study involved new therapeutic approaches that focused on major virulence elements for minimizing the gravity of disease symptoms and preventing further infections. Low-cost PCR technologies will enable rapid *C. difficile* antigen detection to guide the proper management of healthcare-associated infections as well as the development of improved clinical treatment and prevention strategies.

Clinical *C. difficile* isolates produced different toxin levels of TcdA and TcdB according to strain variation with quantified results presented in Table 1. The CDI-003 strain produced the most extensive TcdA concentration at 50.1 ng/mL and CDI-002 became the top producer of TcdB with 60.2 ng/mL concentration. Various studies have confirmed that hypervirulent strains including RT027 overproduce toxins because of mutations in the tcdC toxin regulatory gene [23]. Toxin-enriched bacterial supernatants harmed Vero and Caco-2 cells to such an extent that their LDH release increased three times beyond control levels (p < 0.05) illustrated in Figure 1. The study findings confirm previously reported studies about TcdB playing a dominant role in severe CDI cases through toxin production [24,25].

The gut microbiota stands essential for sustaining an intestine equilibrium and fighting off pathogen intruders. The results findings showed decreased microbial diversity in CDI patients due to their Shannon index measured at 1.9 and Simpson index was 0.45 while healthy controls demonstrated 3.8 and 0.85 respectively in Table 2. Various research shows that antibiotic use destroys Bacteroidetes and Firmicutes bacteria populations thus allowing Proteobacteria opportunistic pathogens to flourish [26]. PCoA analysis displayed separate microbiome patterns between CDI patients and healthy controls which supports the idea that disrupted microbiota acts as a key factor in *C. difficile* colonization and infection seriousness [27,28].

The absence of bacteria that produce secondary bile acids in CDI patients creates an environment that promotes the growth of *C. difficile*. The decrease of secondary bile acids in the gut allows *C. difficile* spores to germinate while simultaneously creating space for increased bacterial multiplication [29]. The data supports that Fecal Microbiota Transplantation together with probiotic supplementation show potential as therapeutic strategies to stop disease recurrence in CDI patients.

The increasing problem of antimicrobial resistance creates challenges for CDI disease management schemes. This study determined that fidaxomicin proved the most effective antibiotic against *C. difficile* in Table 3 while both ciprofloxacin and clindamycin showed substantial resistance rates of 55% and 40% respectively. Also, the results from whole-genome sequencing showed that these resistance-related mutations were found in tested *C. difficile* isolates depicted in Figure 2. The continuing spread of multidrug-resistant *C. difficile* strains emphasizes the necessity for antibiotic

management strategies as well as alternative treatment options such as bacteriophage therapy and monoclonal antibodies focused on toxin production [11].

During C. difficile infection the human body produces intense inflammation that harms the colon tissue. The results revealed that CDI patients displayed elevated production of IL-6, IL-8, TNF- α , and IL-1 β cytokines when compared to subjects with normal conditions in Table 4. The cytokines IL-6 and IL-8 showed marked elevation in CDI patients as they regulate neutrophil migration and promote inflammatory reactions to C. difficile toxins [30].

The toxin damage to epithelial barriers leads to immune activation and increased cytokine production which intensifies colitis symptoms. *C. difficile* infection leads to increased IL-1 β levels which indicates that the pathogen triggers pyroptosis resulting in severe inflammation in Figure 3. The immunomodulatory medicine containing IL-1 β inhibitors might provide effective treatments for managing serious CDI cases [31].

Hence, this study generated vital knowledge about how *C. difficile* spreads and facilitates AAD development at the molecular level. The information regarding toxin production patterns from particular strains with added insight into microbiota damage and antibiotic resistance traits emphasizes the requirement for custom-made therapeutic options. Current CDI management can be enhanced through the use of probiotics together with microbiota-based therapies and immunomodulatory treatments to decrease the rates of recurrence.

Conclusion

The study establishes that *Clostridium difficile* high toxin output alongside gut microbial dysregulation and intense immune system activity functions as the key cause of antibiotic-induced diarrhea. Laboratory samples from CDI-003 and CDI-002 showed the highest toxin levels where TcdA exceeded 50.1 ng/mL and TcdB reached 60.2 ng/mL. The patients with *C. difficile* infection (CDI) experienced a dramatic decrease in gut microbial diversity which reduced their Shannon index from 3.8 to 1.9 and their Simpson index from 0.85 to 0.45. Additionally, significant antibiotic resistance was observed as 55% of isolates were resistant to ciprofloxacin and 40% to clindamycin but 97% remained susceptible to fidaxomicin. CDI patients demonstrated increased inflammatory markers as their IL-6 reached 18.6 pg/mL and IL-8 reached 24.2 pg/mL while the control group had levels at 2.1 pg/mL for IL-6 and 3.4 pg/mL for IL-8. The clinical relevance establishes the vital need to restore gut microbiota diversity while controlling toxin-mediated inflammation. Future investigations need to study microbiome treatment approaches in combination with toxin-blocking methods to enhance CDI management for patients under antibiotic-associated diarrhea treatment.

References

- 1. Britton RA, Young VB. Role of the intestinal microbiota in resistance to colonization by Clostridium difficile. Gastroenterology. 2014 May;146(6):1547-53. doi: 10.1053/j.gastro.2014.01.059. Epub 2014 Feb 4. PMID: 24503131; PMCID: PMC3995857.
- 2. Debast SB, Bauer MP, Kuijper EJ, Committee. European Society of Clinical Microbiology and Infectious Diseases: update of the treatment guidance document for Clostridium difficile infection. Clinical microbiology and infection. 2014 Mar;20:1-26.
- 3. Di Bella S, Sanson G, Monticelli J, Zerbato V, Principe L, Giuffrè M, Pipitone G, Luzzati R. Clostridioides difficile infection: history, epidemiology, risk factors, prevention, clinical manifestations, treatment, and future options. Clin Microbiol Rev. 2024 Jun 13;37(2):e0013523. doi: 10.1128/cmr.00135-23. Epub 2024 Feb 29. PMID: 38421181; PMCID: PMC11324037.
- 4. Rineh A, Kelso MJ, Vatansever F, Tegos GP, Hamblin MR. Clostridium difficile infection: molecular pathogenesis and novel therapeutics. Expert Rev Anti Infect Ther. 2014 Jan;12(1):131-50. doi: 10.1586/14787210.2014.866515. PMID: 24410618; PMCID: PMC4306399.
- 5. Chandra H, Sorg JA, Hassett DJ, Sun X. Regulatory transcription factors of Clostridioides difficile pathogenesis with a focus on toxin regulation. Crit Rev Microbiol. 2023 May;49(3):334-349. doi: 10.1080/1040841X.2022.2054307. Epub 2022 Apr 7. PMID: 35389761; PMCID: PMC11209739.

- 6. Pourliotopoulou E, Karampatakis T, Kachrimanidou M. Exploring the Toxin-Mediated Mechanisms in Clostridioides difficile Infection. Microorganisms. 2024 May 16;12(5):1004. doi: 10.3390/microorganisms12051004. PMID: 38792835; PMCID: PMC11124097.
- 7. Genth H, Just I. Large clostridial glycosylating toxins modifying small GTPases: cellular aspects. The Comprehensive Sourcebook of Bacterial Protein Toxins. 2015 May 29:441.
- 8. Chumbler NM, Farrow MA, Lapierre LA, Franklin JL, Lacy DB. Clostridium difficile Toxins TcdA and TcdB Cause Colonic Tissue Damage by Distinct Mechanisms. Infect Immun. 2016 Sep 19;84(10):2871-7. doi: 10.1128/IAI.00583-16. PMID: 27456833; PMCID: PMC5038081.
- 9. Li C, Harmanus C, Zhu D, Meng X, Wang S, Duan J, Liu S, Fu C, Zhou P, Liu R, Wu A, Kuijper EJ, Smits WK, Fu L, Sun X. Characterization of the virulence of a non-RT027, non-RT078 and binary toxin-positive Clostridium difficile strain associated with severe diarrhea. Emerg Microbes Infect. 2018 Dec 12;7(1):211. doi: 10.1038/s41426-018-0211-1. PMID: 30542069; PMCID: PMC6291415.
- 10. Chandra H, Kovall RA, Yadav JS, Sun X. Host Immune Responses to Surface S-Layer Proteins (SLPs) of Clostridioides difficile. Microorganisms. 2023 Feb 2;11(2):380. doi: 10.3390/microorganisms11020380. PMID: 36838345; PMCID: PMC9963625.
- 11. Phanchana M, Harnvoravongchai P, Wongkuna S, Phetruen T, Phothichaisri W, Panturat S, Pipatthana M, Charoensutthivarakul S, Chankhamhaengdecha S, Janvilisri T. Frontiers in antibiotic alternatives for Clostridioides difficile infection. World J Gastroenterol. 2021 Nov 14;27(42):7210-7232. doi: 10.3748/wjg.v27.i42.7210. PMID: 34876784; PMCID: PMC8611198.
- 12. Sharma S, Mohler J, Mahajan SD, Schwartz SA, Bruggemann L, Aalinkeel R. Microbial Biofilm: A Review on Formation, Infection, Antibiotic Resistance, Control Measures, and Innovative Treatment. Microorganisms. 2023 Jun 19;11(6):1614. doi: 10.3390/microorganisms11061614. Erratum in: Microorganisms. 2024 Sep 27;12(10):1961. doi: 10.3390/microorganisms12101961. PMID: 37375116; PMCID: PMC10305407.
- 13. Seekatz AM, Young VB. Clostridium difficile and the microbiota. J Clin Invest. 2014 Oct;124(10):4182-9. doi: 10.1172/JCI72336. Epub 2014 Jul 18. PMID: 25036699; PMCID: PMC4191019.
- 14. Newman KM, Rank KM, Vaughn BP, Khoruts A. Treatment of recurrent Clostridium difficile infection using fecal microbiota transplantation in patients with inflammatory bowel disease. Gut Microbes. 2017 May 4;8(3):303-309. doi: 10.1080/19490976.2017.1279377. Epub 2017 Jan 19. PMID: 28102756; PMCID: PMC5479399.
- 15. Solomon K. The host immune response to Clostridium difficile infection. Ther Adv Infect Dis. 2013 Feb;1(1):19-35. doi: 10.1177/2049936112472173. PMID: 25165542; PMCID: PMC4040718.
- 16. Zhao S, Ghose-Paul C, Zhang K, Tzipori S, Sun X. Immune-based treatment and prevention of Clostridium difficile infection. Hum Vaccin Immunother. 2014;10(12):3522-30. doi: 10.4161/21645515.2014.980193. PMID: 25668664; PMCID: PMC4514135.
- 17. Al-Jashaami LS, DuPont HL. Management of Clostridium difficile Infection. Gastroenterol Hepatol (N Y). 2016 Oct;12(10):609-616. PMID: 27917075; PMCID: PMC5114503.
- 18. Monaghan TM, Seekatz AM, Mullish BH, Moore-Gillon CC, Dawson LF, Ahmed A, Kao D, Chan WC. Clostridioides difficile: innovations in target discovery and potential for therapeutic success. Expert Opinion on Therapeutic Targets. 2021 Nov 2;25(11):949-63.
- 19. Martínez-Meléndez A, Camacho-Ortiz A, Morfin-Otero R, Maldonado-Garza HJ, Villarreal-Treviño L, Garza-González E. Current knowledge on the laboratory diagnosis of Clostridium difficile infection. World J Gastroenterol. 2017 Mar 7;23(9):1552-1567. doi: 10.3748/wjg.v23.i9.1552. PMID: 28321156; PMCID: PMC5340807.
- 20. Soliman S, Abdalla S, Zedan A, Enany S. Genomic profiling of pan-drug resistant proteus mirabilis Isolates reveals antimicrobial resistance and virulence gene landscape. Functional & Integrative Genomics. 2024 Oct;24(5):154.

- 21. Crobach MJ, Planche T, Eckert C, Barbut F, Terveer EM, Dekkers OM, Wilcox MH, Kuijper EJ. European Society of Clinical Microbiology and Infectious Diseases: update of the diagnostic guidance document for Clostridium difficile infection. Clin Microbiol Infect. 2016 Aug;22 Suppl 4:S63-81. doi: 10.1016/j.cmi.2016.03.010. Epub 2016 Jul 25. PMID: 27460910.
- 22. Kowalska-Krochmal B, Dudek-Wicher R. The Minimum Inhibitory Concentration of Antibiotics: Methods, Interpretation, Clinical Relevance. Pathogens. 2021 Feb 4;10(2):165. doi: 10.3390/pathogens10020165. PMID: 33557078; PMCID: PMC7913839.
- 23. Quesada-Gómez C, López-Ureña D, Chumbler N, Kroh HK, Castro-Peña C, Rodríguez C, Orozco-Aguilar J, González-Camacho S, Rucavado A, Guzmán-Verri C, Lawley TD, Lacy DB, Chaves-Olarte E. Analysis of TcdB Proteins within the Hypervirulent Clade 2 Reveals an Impact of RhoA Glucosylation on Clostridium difficile Proinflammatory Activities. Infect Immun. 2016 Jan 11;84(3):856-65. doi: 10.1128/IAI.01291-15. PMID: 26755157; PMCID: PMC4771349.
- 24. Kordus SL, Thomas AK, Lacy DB. Clostridioides difficile toxins: mechanisms of action and antitoxin therapeutics. Nat Rev Microbiol. 2022 May;20(5):285-298. doi: 10.1038/s41579-021-00660-2. Epub 2021 Nov 26. PMID: 34837014; PMCID: PMC9018519.
- 25. Singh H, Dange K, Gujarathi RH, Loganathan S, Bhuyan D, Jani H. Discovering the impact of dietary interventions on gut microbiome and human health: The clinical trial perspective. J Appl Bioanal. 2024;10(2):28-36. doi:10.53555/jab.v10i2.158.
- 26. Patangia DV, Anthony Ryan C, Dempsey E, Paul Ross R, Stanton C. Impact of antibiotics on the human microbiome and consequences for host health. Microbiologyopen. 2022 Feb;11(1):e1260. doi: 10.1002/mbo3.1260. PMID: 35212478; PMCID: PMC8756738.
- 27. Ogbonnaya CE, Chinweuba AU, Ogbonnaya N, Ihudiebube-Splendor C, Williams JM. Validity and reliability of the Home Management of Diarrhoea Assessment Scale for mothers in Nigeria: A Rasch analysis. Afr J Biomed Res. 2024;27(1):115-120. doi:10.4314/ajbr.v27i1.15.
- 28. Gazzola A, Panelli S, Corbella M, Merla C, Comandatore F, De Silvestri A, Piralla A, Zuccaro V, Bandi C, Marone P, Cambieri P. Microbiota in Clostridioides difficile-Associated Diarrhea: Comparison in Recurrent and Non-Recurrent Infections. Biomedicines. 2020 Sep 8;8(9):335. doi: 10.3390/biomedicines8090335. PMID: 32911854; PMCID: PMC7554755.
- 29. McMillan AS, Theriot CM. Bile acids impact the microbiota, host, and C. difficile dynamics providing insight into mechanisms of efficacy of FMTs and microbiota-focused therapeutics. Gut Microbes. 2024 Jan-Dec;16(1):2393766. doi: 10.1080/19490976.2024.2393766. Epub 2024 Sep 3. Erratum in: Gut Microbes. 2024 Jan-Dec;16(1):2411134. doi: 10.1080/19490976.2024.2411134. PMID: 39224076; PMCID: PMC11376424.
- 30. Jose S, Madan R. Neutrophil-mediated inflammation in the pathogenesis of Clostridium difficile infections. Anaerobe. 2016 Oct;41:85-90. doi: 10.1016/j.anaerobe.2016.04.001. Epub 2016 Apr 5. PMID: 27063896; PMCID: PMC5050096.
- 31. Bratkovič T, Zahirović A, Bizjak M, Rupnik M, Štrukelj B, Berlec A. New treatment approaches for Clostridioides difficile infections: alternatives to antibiotics and fecal microbiota transplantation. Gut Microbes. 2024 Jan-Dec;16(1):2337312. doi: 10.1080/19490976.2024.2337312. Epub 2024 Apr 9. PMID: 38591915; PMCID: PMC11005816.