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Abstract 

The novel coronavirus disease or Covid-19 is a global pandemic caused by the SARS-CoV-2 virus 

originated from Wuhan, China in December 2019. A rapidly spreading, contagious virus that caused 

more than 6.7 million deaths worldwide. The main protease of SARS-CoV-2 is believed to play a vital 

role in mediating viral replication and transcription, making it a potential target of interest against 

Covid-19. In this study, virtual drug screening methods were conducted against a current Mpro 

structure (Protein Data Bank ID: 8SXR) with 868 ligands from the NIH Clinical Collection of clinical 

trial molecules. Multiple possible hit compounds were identified with compound 1 and 2 

outperforming the other compounds in binding conformation and binding free energy. Toxicity and 

ADMET properties of the top 5 compounds were further investigated computationally. To further 

validate the results, molecular dynamic simulations of the top 2 complexes were performed. The two 

complexes displayed stable affinity in respect to the root mean square distance (RMSD), root mean 

square fluctuation (RMSF), radius of gyration (Rg), solvent accessible surface area (SASA) and 

hydrogen bond. 

 

Keywords: SARS-CoV-2; COVID-19; Mpro; Main Protease; Molecular Docking; Molecular 

Dynamics; ADMET; Toxicity; Drug Repurposing; Drug Discovery; Virtual Screening; Clinical Trials 

 

Introduction 

From the start of December 2019, the world experienced an acute respiratory disease outbreak known 

as SARS-CoV-2. To this day, the SARS-CoV-2 pandemic continues to devastate the world, with 

663,640,386 total infections and 6,713,093 deaths as of 21, January 2023 [1]. In the early phases of 

the outbreak, Zhou and co-workers collected full-length genomic sequences of SARS-CoV-2 from 

five different patients [2]. Their analysis revealed 79.6% homology with SARS-CoV and 96% 
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resemblance to bat coronavirus at the genome level. The International Committee of Taxonomy of 

Viruses (ICTV) classified the virus as “severe acute respiratory syndrome coronavirus 2” or SARS-

CoV-2, while the World Health Organization (WHO) pronounced this new disease as COVID-19 [3-

4]. 

 

Although the virus is highly contagious, most cases of the coronavirus result in mild to moderate 

symptoms, with some cases resulting in severe symptoms and mortality. Currently, the WHO has 

classified five variants of SARS-CoV-2 across the world: Alpha, Beta, Gamma, Delta, and Omicron 

[5]. From a genomic standpoint, SARS-CoV-2 displays similarities to other RNA viruses, with the 

susceptibility of random mutations affecting both structural and non-structural genes. These genetic 

mutations not only influence transmissibility and viral phenotype but also contribute to resistant 

adaption towards anti-viral therapies and vaccines. 

 

 
Figure 1: Diagram of SARS-CoV-2 in Relation to Main Protease 

 

SARS-CoV-2 is made up of single stranded positive RNA genome that specify structural and non-

structural proteins. Of interest to the non-structural protein are the RNA-dependent RNA polymerase 

(RdRp), the coronavirus main protease (Mpro or 3CLpro), and the papain-like protease (PLpro) [6]. Upon 

entering the host cell, the viral genome is translated into polyprotein by the host cell’s protein 

translation mechanism. Proteases such as Mpro and PLpro then cleave the polyprotein into effector 

proteins [7-9]. It is thought Mpro can cleave polyproteins at no less than 11 conserved sites allowing it 

to play a pivotal role in viral replication [10], thus making it an attractive therapeutic target (Figure 

1). 

 

Due to how SARS-CoV-2 still plays a big part in society as well as being a major public concern in 

2023, there is a need for the discovery of new therapeutics [11]. While researching and developing 

new therapeutics is time-consuming and necessitate the need for diverse financial responsibilities, the 

repositioning of existing or known novel therapeutics should be considered. A cost-effective and rapid 

method for identifying potential drug candidates would be the usage of computer-assisted virtual 

screening (VS) contrary to high-throughput screening (HTS) [12]. The VS methodology optimizes 

the selection of potential drug candidates or hits through in silico screening of library collections of 

different molecules against a target of interest. Recently, VS has played a pivotal role in discovery of 

small molecule inhibitors of therapeutic targets. 
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In this study, we explored a dataset from the National Institutes of Health (NIH) Clinical Collection 

library of small molecules that have an extensive history in human clinical trials. The dataset is 

composed of 868 ligands which were used in a docking-based virtual screening approach against the 

Mpro inhibitor. An array of screening strategies, such as molecular docking, molecular dynamics 

simulation, and ADMET prediction were carried out. A current 2023 Mpro crystalline structure was 

obtained and analyzed to provide a current theoretical insight. The purpose of this study was to provide 

a theoretical insight on possible drug hits for future biological experiments.  

 

Materials and Methods 

Analysis of Crystalline Structure 

The COVID-19 Main Protease X-ray crystallography structure (PDB ID: 8SXR) with resolution 2.11 

Å was obtained from the Protein Data Bank at the RCSB site (rscb.org) [13]. The structure was then 

evaluated on the PROCHECK, ERRAT, and Verify3D webserver to conduct chirality, dihedral angles, 

planarity, disulphide bonds, covalent geometry non-bonded interactions, stereochemical parameters, 

main-chain hydrogen bonds, parameter comparisons, and residue-by-residue analysis [14]. 

Ramachandran plot was then generated to predict Phi and Psi angles of the backbone conformation. 

Further quality assessment of the structure was performed on ProSA, a web-based analysis interactive 

to identify possible errors within the 3D structure [15].  

 

Crystalline Structure Preparation 

The Main Protease structure, PDB: 8SXR was then prepared in Maestro (Schrödinger Maestro version 

2023-3) using the Protein Preparation Wizard within the suite to eliminate possible defects involving 

missing hydrogens, inaccurate bond orders, charges, alignment issues, and missing side chains using 

default parameters with the force field OPLS_4 (Optimized Potential for Liquid Simulations) for 

optimalization and minimization [16-18]. Furthermore, a restrained energy minimization was used to 

remove steric hinderance and strained bonds or confirmation. Lastly, restrained minimization of the 

heavy atoms was converged to a root mean square deviation or RMSD of 0.30 Å for optimal docking 

simulation. 

 

 
Figure 2. Ramachandran plot of φ–ψ distribution of 8SXR generated by PROCHECK (A) Protein 

structural analysis validation from ProSA webserver (B)(C) 

 

Ligand Data Set Preparation for Virtual Screening 

A collection of 868 2D structures were downloaded from the NIH Clinical Collection as a SDF file. 

The structure files were then loaded into BioLuminate workspace (BioLuminate version 2023-3) to 

identify possible ligand duplicates or errors [19-22]. LigPrep (LigPrep version 2023-3) interface 
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within the Schrödinger suite was then used to prepare the 2D structures into 3D structures as well as 

neutralizing charges and stereoisomer generation using the OPLS_4 force field at an ionization state 

of pH 7.0 ± 2.0 through Epik generating 35 poses per ligand [23]. 

 

Virtual Screening by Using Glide for Molecular Docking 

The receptor grid creation panel in the Glide (Glide version 2023-3) module of Schrödinger suite was 

used to create a grid box around the co-crystallized ligand within the receptor protein [24-27]. The 

boxes were centered using the co-crystallized ligand as reference within the complex while scaling 

factor of van der Waal’s radius was established at 1.0 Å and partial charge cutoff retained at 0.25 

without constraints. Through this, a cubic box with coordinates of -23.72 in the x direction, 7.05 in 

the y direction, and 26.45 in the z direction was generated from the basis of chain A. Molecular 

docking was then performed with the ligand data set using the docking function in Glide for Standard 

Precision (SP). 

 

 
Figure 3. 2D Structure of the Top 10 Compounds of Interest from Docking Results 

 

ADMET, Drug-Likeness Properties, and Toxicity Prediction  

ADMET and drug-likeness properties of the top five top scoring compounds were analyzed with the 

webserver ADMETlab 2.0 [28].  This is to evaluate druggable effects and acceptability of screened 

compounds. The ProTox-II platform was utilized to predict possible toxicity [29-30].  

 

Molecular Dynamic Simulation 

The stability of the top 2 compounds docked in the active site in complex with the Main Protease was 

studied under physiological conditions using SiBioLead LLP (https://sibiolead.com), a GROMACS 

based molecular dynamic server [31-35]. The complexes were solvated using a triclinic box with 

water molecules as Simple Point Charges (SPC) and NaCl as counter ions. Physiological conditions 

were maintained with the addition of 0.15 M NaCl to the system. The CHARM27 force field was used 

for both simulations. The system was equilibrated for 100 ps using the NVT/NPT protocol with 

temperatures set at 300k and pressure at 1 bar. Leap Frog simulation integrator at 5000 frames was 

then carried out. 
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Figure 4. Overlap of Compound 1 (Faded Salmon), 2 (Blue), and 3 (Green) (A) Overlap of 

Compound 4 (Yellow), 5 (Faded Teal), and 6 (Red) (B) Compound 7 (Teal), 8 (Azure), 9 (Red-

Orange), and 10 (Magenta) (C) 
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Figure 5. Center Main Protease Mpro 8SXR; Visualization of Compounds 1 (A), 2 (B), 3 (C), 4 (D), 

5 (E), 6 (F) Docked Inside Binding Pocket 

 

Results and Discussion 

 

Compound 

Number 

PubChem 

CID 

Molecular 

Formula 

Molecular Weight 

(g/mol) 

Binding Energy 

(kcal/mol) 

1 23667300 C16H16N3NaO7S2 449.4 -8.933 

2 117072412 C61H88N18O16 1329.5 -8.661 

3 60934 C39H54N6O8S 766.9 -8.571 

4 23581804 C61H88N18O16 1329.5 -8.253 

5 117072376 C26H29CIN2O4 469 -8.110 

6 150311 C24H21F2NO3 409.4 -8.096 

7 117072379 C26H29CIN2O4 469 -7.991 

8 5282402 C21H24CINO3 373.9 -7.940 

9 68539 C19H24Cl2N2 351.3 -7.910 

10 63002 C32H40CINO4 538.1 -7.907 

Table 1. Top 10 Compounds from Docking Results 
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Figure 6. ERRAT Plot (A) and Verify 3D Plot (B) 

 

The Ramachandran plot generated from Procheck for the Main Protease crystalline structure of 8SXR 

revealed phi/psi angles distribution of 93.5% residues were in the most favored regions, 5.3% residues 

were situated in the additional allowed regions, 1.0% residues fell in the generously allowed regions, 

while 0.2% were in the disallowed conformations (Figure 2A). From this stereochemical quality 

estimation by Procheck it is revealed the structure is reliable for molecular docking. The Z-score was 

analyzed by PROSA web tool to measure the deviation of the total energy of the complex to the energy 

distribution to the random conformations. The complex revealed an overall model quality score of -

7.24 revealing it be of decent quality (Figure 2B and 2C). 

Furthermore, ERRAT a protein structure analysis method used to detect incorrect regions within a 

protein structure through examining errors leading to random atoms distributions vs distinguishing 

correct distributions revealed an overall quality of 97.931% [36] (Figure 6A). Verify 3D, an analysis 

used to visualize the compatibility of the structure’s atomic model in correlation with its amino acid 

sequence was simulated and revealed an above average score when comparing to other structures 

(Figure 6B). 

 

During the docking simulation, 35 different conformations were generated for each ligand and docked 

into the prepared complex. From the docking outcomes, the conformation with the lowest docked 

energy was designated as the best conformation. Bases on the dataset used for the study, all 

compounds had a binding energy between -8.933 and -2.101 kcal/mol, suggesting most of the 

interactions are exothermic. According to the ranking of energy values, the top 10 compounds from 

the molecular docking analysis are shown in Table 1 (Figure 3). Additionally, the visualization of the 

top 6 compounds overlaps and singular binding inside the pocket of the complex is shown (Figure 4 

and 5). 

The protein-ligand interactions provide visual insights into the interaction of the top compounds 

within the binding pocket (Figure 6). From an analysis standpoint, all docked complexes display 

nonbonding interactions such as hydrogen bonding, hydrophobic interactions, pi-pi stacking, polar 
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and non-polar interactions, and charged interactions. These interactions play a crucial role in helping 

to understand the binding ability of a compound to the active site.  

An in-depth examination of the ligand interaction diagram display dominates polar and hydrophobic 

residues for most of the interactions. Compound 1 displayed hydrogen bond at residues ASN 142 and 

GLU 166. Compound 2 engaged hydrogen bonding at residues ASN 142, HIE 163, GLU 166, HIS 

164, THR 45, and THR 26. Compound 3 showed hydrogen bonding at residues GLN 189 and formed 

a salt bridge at HIE 4. Compound 4 formed hydrogen bonds at residues HIE 41, ASN 142, GLU 166, 

THR 26, and ASN 119. Compound 5 involved hydrogen bonds at residue ASN 142 and formed a Pi-

cation at residue HIE 41. Compound 6 involved hydrogen bond interactions at residues ASN 142 and 

HIE 163 while forming a π- stacking at residue HIE 41. Compound 7 formed a hydrogen bond at 

residue ASN 142 and a Pi-cation at residue HIE 41. Compound 8 produced a hydrogen bond at residue 

HIE 41. Compound 9 generated a hydrogen bond at residue HIE 41 and a halogen bond was 

overserved at residue HIE 163. Finally, compound 10 produced a hydrogen bond at residues ASN 119 

and GLN 189. 

Hydrogen bonding interactions are an important pillar for the binding stability of a complex. We’ve 

noticed most hydrogen bonding involves around the residues ASN 142, GLU 166, HIE 41, and HIE 

163 for most of the interactions in the docking simulations. 

 

 
Figure 6. Ligand Interaction Diagram of the Top 6 Compound 1 (A), 2 (B), 3 (C), 4 (D), 5 (E), and 

6 (F) 
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Figure 7. Ligand Interaction Diagram of the Top 6 Compound 7 (A), 8 (B), 9 (C), 10 (D) 

 
Compound 1 2 3 4 5 

logP -0.675 -0.746 2.411 -0.746 4.054 

logS -1.863 -2.718 -2.846 -2.718 -4.095 

logD -0.616 -0.755 2.723 -0.755 3.520 

TPSA 151.090 533.190 221.120 533.190 100.220 

nHA 10 34 14 34 6 

nHD 3 21 7 21 5 

nRing 3 6 5 6 8 

nRot 9 43 16 43 2 

Table 2. In-Silico Values of Physicochemical Properties Obtained with ADMETlab 2.0 

 

In addition to the wealth of experimental data available for the top 5 molecules of interested, we 

employed an in silico ADMET webserver, ADMETlab 2.0 to generate additional insights into their 

physicochemical, metabolic, and toxicological properties and to complement the extensive clinical 

data available for this computational study. Simulated physicochemical properties (Table 2) reveals 

the top five compounds are within acceptable values or within an acceptable range. The data further 

reveals, LogP and LogS, theories related to lipophilicity of a molecule were within acceptable range 

which one may deduce high possibilities of optimal oral bioavailability suggesting development of 

oral administration. Table 3 displays simulated pharmacological properties where various parameters 

were calculated (Figure 8). It is believed the closer or positive the NP values are, the higher the 

probability that the molecule has a greater similarity to a natural product. Suggesting compound 5 

might be closely related to a natural product while compounds 2, 3, 4 have a slight chance. Compound 

5 generated a Chelator alert implying it might generate a reaction with metal present in the catalytic 

site of the enzyme. 
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Figure 8. Predicted Physicochemical Properties Obtained with ADMETlab 2.0 Compound 1 (A), 2 

(B), 3 (C), 4 (D), 5 (E) 

 
Compound 1 2 3 4 5 

NP Score -0.275 -0.033 -0.080 -0.033 1.212 

PAINS 0 Alerts 0 Alerts 0 Alerts 0 Alerts 0 Alerts 

Lipinski’s Rule Accepted Rejected Rejected Rejected Accepted 

Pfizer Rule Accepted Accepted Accepted Accepted Accepted 

GSK Rule Rejected Rejected Rejected Rejected Rejected 

Golden Triangle Accepted Rejected Rejected Rejected Accepted 

Chelator Rule 0 Alerts 0 Alerts 0 Alerts 0 Alerts 1 Alert 

Table 3. In Silico Values of Drug Likeness Properties Obtained with ADMETlab 2.0 

 

 
Compound 1 2 3 4 5 

HIA +++ +++ ++ +++ -- 

Caco-2 Permeability -5.357 -7.107 -5.724 -7.107 -5.917 

MDCK Permeability 2E-05 5.4E-06 1.6E-05 5.4E-06 7.8E-06 

Pgp-Inhibitor --- --- --- --- --- 

Pgp-Substrate - +++ --- +++ -- 

F20% +++ +++ +++ +++ +++ 

F30% +++ +++ ++ +++ - 

Table 4. In Silico Values of Absorption Parameters Obtained with ADMETlab 2.0 

 

Human Intestinal Absorption (HIA) values are shown in Table 4. Compound 5 displays the ability to 

be passively absorbed in the intestine, while the other four compounds may present difficulty in 

permeating passively into the gastrointestinal system. Caco-2 or the human colon epithelial cancer 

cell line is often predicted due to its ability to determine whether a substance is suitable for oral 

administration, intestinal permeability, and drug efflux. The optimal range for possible Caco-2 

permeability are values greater than -5.15. Of the five compounds analyzed none are permeable. 

However, due to the statistical proximity of compound 1 and 5 to the border value once error is 

considered, these two compounds can be considered as possibilities. The MDCK cell line, known for 

drug transport and permeability was predicted. All compounds displayed low to medium probability 

of permeability. P-glycoprotein known as a transmembrane protein, acts as a pump that actively 

transfers drugs outside of the cell. Thus, the drug can act as a substrate, reducing and increasing 
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bioavailability, through interactions at allosteric sites causing conformational changes that blocks the 

channel. While all compounds show positive signs as possible PGP inhibitors favoring bioavailability, 

not all compounds show positive signs for as possible substrates for PGP, which disfavor the 

bioavailability of those compounds.  

 
Compound 1 2 3 4 5 

PPB 51.988% 16.476% 96.618% 16.476% 95.534% 

VD 0.249 0.292 0.371 0.292 3.039 

BBB Penetration --- --- --- --- +++ 

Fu 63.202% 41.621% 1.612% 41.621% 2.450% 

Table 5. In Silico Values of Distribution Profile Obtained with ADMETlab 2.0 

 

Simulated results of the distribution and metabolism of the five molecules are shown in Table 5 and 

6. It is assumed through studies that drugs with high plasma protein binding or PPB may have a lower 

therapeutic index. Compounds 3 and 5 display the highest value in this regard. All molecules 

displayed optimal range for volume of distribution (VD), while only compound 5 displayed the 

probability of penetrating the blood brain barrier (BBB). Fu parameter or fraction not bound in plasma 

indicates possible interactions with target proteins such as receptors, channels, and enzymes. While 

also displaying ability to diffuse between plasma and tissues. Compound 1, 2, and 4 displayed high 

probability while 3 and 5 have lower probability. Metabolic profiling of the molecules was analyzed 

through determining the substrate and inhibitor values of various cytochrome-450 (CYP) family. The 

CYP enzyme families usually involves CYP1, CYP2, CYP3, and CYP4. Cytochrome enzymes play 

an important role during drug metabolism; therefore, is of interest when studying molecule profiles. 

This is due to participation as either a substrate or inhibitor contributes to drug action. From the data, 

compound 2 and 3 shows inhibitory or substrate potential. However, compound 1, 3, and 5 shows 

possible interactions for various CYP. 

 
Compound 1 2 3 4 5 

CYP1A2 inhibitor --- --- --- --- --- 

CYP1A2 substrate -- --- --- --- ++ 

CYP2C19 inhibitor --- --- --- --- -- 

CYP2C19 substrate -- --- --- --- + 

CYP2C9 inhibitor --- --- + --- -- 

CYP2C9 substrate -- - ++ - -- 

CYP2D6 inhibitor --- --- --- --- +++ 

CYP2D6 substrate --- --- -- --- +++ 

CYP3A4 inhibitor --- --- +++ --- -- 

CYP3A4 substrate +++ --- + --- ++ 

Table 6. In Silico Values of Metabolism Profile Obtained with ADMETlab 2.0 

 

Oral toxicity was simulated using the ProTox II web server that bases its prediction based on 2D 

similarity and recognition of toxic fragments expressed as LD50 (mg/kg). The platform is classified 

into five different categories: (1) acute toxicity using oral toxicity models with six different toxicity 

classes; (2) organ toxicity; (3) toxicological endpoints; (4) toxicological pathways; and (5) 

toxicological targets. The ProTox II web server incorporates 33 different models for the prediction of 

various toxicity endpoints by identifying molecular similarities, fragment propensities, fragment 

similarity-based CLUSTER cross validation, and machine-learning. Toxicity endpoints and organ 

toxicity prediction involves simulating hepatotoxicity, cytotoxicity, carcinogenicity, mutagenicity, and 

immunotoxicity. Furthermore, it simulates based on data from in vitro and in vivo assays. The ProTox 

II web server also simulates toxicological pathways based on nuclear receptor signaling pathways and 

stress response pathways. This methodology is based on how a compound can activate or inhibit a 

receptor or an enzyme. When interacted, it may result in perturbation of diverse biological pathways, 

thus disrupting cellular processes and causing cell death. 
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The rat oral toxicity prediction LD50 (mg/kg) and its corresponding toxicity classes (I-VI) for the top 

5 compounds are shown in Table 8 (Figure 8). Among the 5 simulated compounds, compound 1 

displayed the least toxicity at (LD50 = 1000 mg/kg) as a class VI with above average prediction 

accuracy. This classification designates compound 1 as a possible non-toxic class as its LD50 is greater 

than 5000. Compounds 2, 4, and 5 both fell under the class IV classification defining it as harmful 

after swallowing as its LD50 fell between 300 and 2000. Compound 3 is classified as a class III toxicity 

implying toxic after swallowing as its LD50 is between 50 and 300. 

 

 
Figure 8. Graphical Representation of Predicted Dose Value Distribution for Compound 1 (A), 2 

(B), 3 (C), 4 (D), and 5 (E) 

 
Compound Predicted LD50 

(mg/kg) 

Predicted Toxicity 

Class 

Average Similarity 

(%) 

Prediction Accuracy 

(%) 

1 10000 6 99.57 72.9 

2 400 4 60.75 68.07 

3 300 3 54.96 67.38 

4 400 4 60.75 68.07 

5 402 4 55.59 67.38 

Table 8. Acute Oral Toxicity Prediction Using ProTox II Web Server 

 

Compound Hepatotoxicity 

(%) 

Carcinogenicity 

(%) 

Immunotoxicity 

(%) 

Mutagenicity 

(%) 

Cytotoxicity (%) 

1 Inactive (74) Inactive (63) Inactive (99) Inactive (64) Active (50) 

2 Inactive (80) Inactive (56) Inactive (97) Inactive (58) Inactive (63) 

3 Inactive (72) Inactive (71) Inactive (95) Inactive (69) Inactive (64) 

4 Inactive (80) Inactive (56) Inactive (97) Inactive (58) Inactive (63) 

5 Inactive (83) Inactive (66) Active (97) Inactive (61) Inactive (53) 

Table 9. Organ Toxicity and Toxicological Endpoints Predicted Activity Using ProTox II Web 

Server 

 

Predicted organ toxicity with emphasis to liver toxicity or hepatotoxicity is shown in Table 9. All 

compounds simulated for this study revealed above average probability in being hepatotoxicity, 

carcinogenicity, and mutagenicity inactive. While compound 5 displayed a high possibility of being 

immunotoxicity active and compound 1 display a low probability of being cytotoxic. All other 

compounds simulated showed inactivity for immunotoxicity and cytotoxicity. 
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Compound 1 2 3 4 5 

Aryl Hydrocarbon Receptor (AhR) 

(%) 

Inactive (98) Inactive 

(98) 

Inactive (97) Inactive 

(98) 

Inactive (90) 

Androgen Receptor (AR) (%) Inactive (99) Inactive 

(99) 

Inactive (98) Inactive 

(99) 

Inactive (99) 

Androgen Receptor Ligand Binding 

Domain (AR-LBD) (%) 

Inactive (99) Inactive 

(99) 

Inactive (98) Inactive 

(99) 

Inactive (99) 

Aromatase (%) Inactive (99) Inactive 

(98) 

Inactive (87) Inactive 

(98) 

Inactive (95) 

Estrogen Receptor Alpha (ER) (%) Inactive (98) Inactive 

(96) 

Inactive (91) Inactive 

(96) 

Inactive (93) 

Estrogen Receptor Ligand Binding 

Domain (ER-LBD) (%) 

Inactive (99) Inactive 

(99) 

Inactive (99) Inactive 

(99) 

Inactive (99) 

Peroxisome Proliferator Activated 

Receptor Gamma (PPAR-Gamma) 

(%) 

Inactive (99) Inactive 

(99) 

Inactive (98) Inactive 

(99) 

Inactive 

(100) 

Table 10. Toxicological Pathways: Nuclear Receptor Signaling Pathways Prediction Using ProTox 

II Web Server 

 

Nuclear receptor signaling pathways were simulated and all 5 compounds are given a high probability 

score of being inactive for AhR, AR, AR-LBD, ER, ER-LBD, and PPAR Gamma (Table 10). The 

results revealed that these compounds might exhibit weak estrogenic activities as well as 

antiestrogenic, antiandrogenic, and anti-TH activities. It is thought that nuclear receptor signaling 

maintains development, cellular growth, inflammation, and metabolism. While ligand distribution 

within the nuclear receptor varies with few receptors found predominantly in the nucleus (pregnane 

X receptor and peroxisome proliferator-activated receptor gamma). In some cases, some receptors are 

in both the nucleus and cytoplasm (vitamin D receptor and mineralocorticoid receptor), while others 

mostly in the cytoplasm (glucocorticoid receptor and androgen receptor) [37]. Based on the presented 

results, all five compounds indicate possible inactivity to carcinogenesis. 

 

Table 11, stress response pathways such as nrf2/ARE, HSE, MMP, p53, and ATAD5 were predicted 

for the five compounds. In theory, adaptive stress response pathways are signal transduction pathways 

that are activated in response to cellular stress. These pathways ultimately lead to the transcriptional 

activation of cytoprotective genes, which are genes that encode proteins that protect the cell [38-40]. 

The simulation revealed all compounds were inactive for each category. However, compound 3 

displayed high probability of Mitochondria Membrane Potential activity.  

 
Compound 1 2 3 4 4 

Nuclear Factor (Erythroid-Derived 2-Like 

2/Antioxidant Responsive Element) (nrf2/ARE) (%) 

Inactive 

(93) 

Inactive 

(97) 

Inactive 

(80) 

Inactive 

(97) 

Inactive 

(93) 

Heat Shock Factor Response Element (HSE) (%) Inactive 

(93) 

Inactive 

(97) 

Inactive 

(80) 

Inactive 

(97) 

Inactive 

(93) 

Mitochondrial Membrane Potential (MMP) (%) Inactive 

(99) 

Inactive 

(93) 

Active 

(98) 

Inactive 

(93) 

Inactive 

(89) 

Phosphoprotein (Tumor Suppressor) p53 (%) Inactive 

(97) 

Inactive 

(97) 

Inactive 

(90) 

Inactive 

(97) 

Inactive 

(97) 

ATPase Family AAA Domain Containing Protein 5 

(ATAD5) (%) 

Inactive 

(99) 

Inactive 

(98) 

Inactive 

(96) 

Inactive 

(98) 

Inactive 

(92) 

Table 11. Toxicological Pathways: Stress Response Pathways Predicted Using ProTox II Web 

Server 

 

Mitochondria are double membrane organelles that are essential for cellular energy production and 

apoptosis prevention [41]. In response to mitochondrial stress, yeast cells have evolved a retrograde 

response pathway that signals from the mitochondria to the nucleus to induce the transcription of 

nuclear encoded mitochondrial genes [42]. This pathway helps to alleviate mitochondrial stress and 

promote cell survival. It is further believed that mitochondrial stress caused by toxins can lead to a 
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variety of diseases [43]. Richter and colleagues have shown that toxins can inhibit mitochondrial 

protein synthesis and block the stress response pathway, further exacerbating mitochondrial 

dysfunction [44]. Interestingly, p53 (Phosphoprotein tumor suppressor) and ATAD5 (ATPase family 

AAA domain-containing protein 5) were observed to be inactive for all five compounds. The p53 gene 

is a tumor suppressor that plays a critical role in cell cycle regulation, DNA damage response, 

apoptosis, and other cellular processes. All five compounds displayed inactivity in the prediction 

imply the probability not being carcinogenesis. ATAD5 is another important regulator involved in 

DNA damage response. It plays a role in RAD9A related damage checkpoint, which determines 

whether DNA damage can be repaired or if cells should undergo apoptosis. Since all five compounds 

displayed inactivity, this may suggest possible DNA damage repair may occur as there were no stress 

response to ATAD5. 

 

To evaluate the stability of the complexes formed from molecular docking and obtain other insights 

into the different interactions that make up its stability, a 100 ns molecular dynamic simulation was 

performed on compounds 1 and 2. The results show that compound 1 reached equilibrium after 40 ns 

of simulation at a Root Mean Square Deviation (RMSD) value of around 0.25 nm while compound 2 

equilibrated between 45 ns and 65 ns before fluctuations were noted (Figure 9). The results suggest 

that the complexes does not experience significant conformational changes when interacting with the 

ligand, suggesting the probability of positive interaction with inhibition. From the RMSD of the 

ligands, values were below 0.7 nm, which supports the reliability of the docking analysis. Lower 

RMSD values also suggest that the complex presented stability over time, further supporting 

inhibition possibility. Both compounds displayed almost similar RMSF, but compound 1 displayed 

slightly higher RMSF indicating possible greater flexibility in the binding sites. Compound 1 also 

displayed higher solvent accessible surface area compared to 2. Signifying possible larger interface 

with solvent during the simulation and influencing the interactions. 

 

 
Figure 9. RMSD (A), RMSF (B), and Solvent Accessible Surface (C) 
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Figure 10. Radius of Gyration (A) and Hydrogen Bonds (B) 

 

To observe the protein’s compactness, the radius of gyration was analyzed. On average both 

simulations remained below the 2.28 Å threshold, suggesting the protein maintained its structural 

integrity throughout the simulation (Figure 10). Compound 1 displayed a minor increase above 2.30 

Å around 30 nanoseconds implying a possible disruption of the protein’s compactness. The number 

of hydrogen bonds formed remained relatively stable between 200 to 240 without any fluctuation. 

This suggests the complex interaction with the compounds upheld a steady interaction with the protein 

through the simulation. 

 

Conclusion 

Molecular docking and molecular dynamics simulations have been widely utilized in drug screening 

and drug design. In this study, we presented several interesting findings about SARS-CoV-2 Mpro. The 

compounds analyzed in this study would be interesting to study further as potential inhibitors of 

SARS-CoV-2 Mpro. Structural optimization and clinical trials should be further investigated after 

biological experiments. However, high-throughput molecular docking and molecular dynamic 

simulations has revealed the possibility that these compounds can form stable conformational 

structures with Mpro and potentially inhibit SARS-CoV-2. While at the same time, this study provides 

helpful insights for possible future studies. 
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