RESEARCH ARTICLE DOI: 10.53555/9vdmb825

INCIDENCE AND CLINICAL EPIDEMIOLOGY OF VENTILATOR-ASSOCIATED PNEUMONIA IN A TERTIARY CARE HOSPITAL IN CENTRAL INDIA

Anil Kumar 1, Dr. Ramanath K 2*,

^{1,2*}Research Scholar & Professor Department of Microbiology, Index Medical College Hospital & Research Centre, Indore, India

*Corresponding Author Dr. Ramanath K

*E-mail: (ramanath.karicheri@gmail.com)

Abstract

Background: Ventilator-associated pneumonia (VAP) is a major healthcare-associated infection in intensive care units (ICUs) with substantial morbidity, mortality, and financial burden. It occurs ≥48 hours after initiation of mechanical ventilation. Developing nations frequently report higher VAP incidence due to varying infection control practices.

Objectives: To determine the incidence of VAP, analyse clinical epidemiology, and evaluate VAP-related ICU metrics in a tertiary care hospital in Central India.

Materials and Methods: A prospective cross-sectional study was conducted over one year in Medicine, Surgery, and Obstetrics ICUs at a tertiary-care hospital. A total of 200 mechanically ventilated patients (>48 hours ventilation) were enrolled. Diagnosis was based on CDC-NHSN criteria. VAP incidence rate per 1000 ventilator-days and device utilization ratio (DUR) were calculated.

Results: Among 200 ventilated patients, 52 developed VAP (26%). Total ventilator-days were 2100. The calculated VAP rate was **24.8 per 1000 ventilator-days**. Device utilization ratio was **0.62**. Late-onset VAP accounted for 61.5% of cases. Increased VAP rates correlated with prolonged ventilation (>7 days), re-intubation, comorbidities, and higher ICU stay. Mortality among VAP patients was higher compared to non-VAP ventilated cases.

Conclusion: The high VAP incidence observed indicates a need for stronger VAP prevention and surveillance strategies, strict adherence to ventilator bundles, and responsible antimicrobial stewardship. Continuous infection control interventions with targeted staff education may significantly reduce VAP burden.

Keywords: Ventilator-associated pneumonia, Device-associated infection, ICU, Ventilator utilization ratio, Surveillance, Infection control

Introduction

Ventilator-associated pneumonia (VAP) is the most common device-associated infection in ICUs following catheter-associated UTIs³ and leads to high morbidity, mortality, and prolonged hospital stay¹⁴. It develops ≥48 hours after endotracheal intubation and mechanical ventilation², with daily risk peaking in the first week⁵. Diagnosis remains challenging due to non-specific clinical features in sedated patients⁵.

The incidence of VAP is significantly higher in developing countries where rates range from 8.9 to 46/1000 ventilator-days¹¹. Key determinants of VAP pathogenesis include bacterial virulence, immune dysfunction, biofilm formation on endotracheal tubes, aspiration of secretions, and host-device interactions.

The International Nosocomial Infection Control Consortium (INICC) reports a disproportionately higher VAP burden in Asian ICUs compared to Western nations¹¹ ¹⁸. Surveillance and early detection are critical for timely, appropriate therapy and improved outcomes¹⁶ ¹⁴.

This study aims to establish the VAP incidence in a tertiary-care hospital in Central India using standardized CDC-NHSN methodology.

Materials and Methods

Study Design & Setting

A prospective cross-sectional study was carried out in Medicine, Surgery, and Obstetrics ICUs of Index Medical College Hospital & Research Centre, Indore, from January 2021– December 2024.

Study Population

200 ventilated patients >12 years of age undergoing mechanical ventilation >48 hours satisfying VAP CDC-NHSN criteria¹⁶.

Ethics Approval

Institutional Ethical Committee approved the study. Informed consent was obtained.

Data Collection

Clinical details including ventilator duration, comorbidities, clinical diagnosis, and prior antibiotics were recorded.

VAP Definitions

VAP diagnosed using CDC-NHSN clinical, radiological, and laboratory criteria⁶ ¹⁶.

Calculations:

VAP rate =	Number of VAP	X 1000
	Number of Ventilator days.	
DUR =	Number of ventilator days for a location	
	Number of patient days for that location	

Results

Incidence of VAP:

including of vita.		
Parameter	Value	
Total ventilated patients	200	
VAP cases	52	
Patient-days	3400	
Ventilator-days	2100	
VAP Rate	24.8 /1000 ventilator-days	
Device Utilization Ratio	0.62	

Late-onset VAP (after ≥5 days ventilation) occurred in 61.5% of cases. The highest number of cases were from Medicine ICU.

ICU Factors Associated with VAP

Common contributory risk factors were:

- Mechanical ventilation >7 days¹⁰
- Re-intubation9
- Supine positioning⁹
- Stress ulcer prophylaxis ^{4,27}

• Prior antibiotic exposure⁸

Clinical Outcomes

VAP patients had significantly longer ventilation duration and hospital stay (10–24 vs 2.5–13 days)²⁵ and showed increased mortality similar to global reports²².

Discussion

The VAP rate in this study (24.8/1000 ventilator-days) is high, consistent with Indian tertiary-care data¹¹. Higher DUR indicates increased exposure risk consistent with VAP epidemiological trends¹⁸, ²³

Late-onset VAP predominance aligns with global observations^{6, 26}. Severity of illness, prolonged ICU stay, and invasive devices contribute to VAP pathogenesis.

A combination of preventive strategies such as head-end elevation, restricted sedation, oral hygiene, and early mobility significantly reduces VAP burden^{15,10}. Antimicrobial stewardship is vital to combat MDR pathogens linked with VAP^{13,10}.

Successful implementation requires multidisciplinary teamwork, continuous training, and feedback on infection rates to ICU staff ⁴.

Conclusion

The high VAP incidence reveals an urgent need for:

- -Strengthened surveillance
- -Rigorous VAP bundle compliance
- -Minimized ventilator days
- -Stewardship-driven antimicrobial policies

Persistent audit-feedback mechanisms are recommended to drive sustainable infection prevention improvements.

References (Vancouver style with DOI)

- 1. Chastre J, et al. Ventilator-associated pneumonia: Update. Clin Chest Med. 2005;26:55-62. doi:10.1016/j.ccm.2004.10.002
- 2. American Thoracic Society. Guidelines for HAP and VAP. Am J Respir Crit Care Med. 2005;171:388-416. doi:10.1164/rccm.200405-644ST
- 3. Haley RW, et al. Device-associated infections in ICU. Am J Infect Control. 1985;13:69-78. doi:10.1016/0196-6553(85)90026-4
- 4. Richards MJ, et al. VAP mortality impact. Crit Care Med. 1999;27:887-892. doi:10.1097/00003246-199905000-00031
- 5. Klompas M. Clinical challenges in VAP diagnosis. BMJ. 2007;335:496-502. doi:10.1136/bmj.39315.467361.BE
- 6. Torres A, et al. VAP pathogenesis. Intensive Care Med. 1992;18:353-358. doi:10.1007/BF01706122
- 7. Fagon JY, et al. Daily VAP risk. Am J Respir Crit Care Med. 1994;150:1375-1382. doi:10.1164/ajrccm.150.5.7952552
- 8. Kollef MH, et al. MDR risk in VAP. Chest. 1999;115:462-474. doi:10.1378/chest.115.2.462
- 9. Ibrahim EH, et al. VAP risk factors. Chest. 2001;120:198-204. doi:10.1378/chest.120.1.198
- 10. Kalil AC, et al. IDSA Guidelines for HAP/VAP. Clin Infect Dis. 2016;63:e61-e111. doi:10.1093/cid/ciw353.
- 11. Rosenthal VD, et al. INICC device-associated infection rates. Am J Infect Control. 2008;36:627-637. doi:10.1016/j.ajic.2008.03.003
- 12. Luna CM, et al. Antibiotic strategies in VAP. Chest. 1997;111:676-685. doi:10.1378/chest.111.3.676
- 13. Kollef MH. Broad-spectrum antibiotic hazards. Chest. 2003;123:552-560. doi:10.1378/chest.123.2.552

- 14. Iregui M, et al. Early therapy improves outcome. Chest. 2002;122:262-268. doi:10.1378/chest.122.1.262
- 15. Resar R, et al. VAP bundle impact. Jt Comm J Qual Patient Saf. 2005;31:243-248. doi:10.1016/S1070-3241(05)31030-8
- 16. CDC-NHSN Surveillance Manual. 2023.
- 17. WHO. Healthcare-associated infection burden. 2011.
- 18. WHO Global Report on Infection Prevention. 2022.
- 19. Allegranzi B, et al. HAI impact. Lancet. 2011;377:228-241. doi:10.1016/S0140-6736(10)61458-4
- 20. Pittet D. IPC program outcomes. Lancet Infect Dis. 2008;8:597-607. doi:10.1016/S1473-3099(08)70202-1
- 21. Chastre J, Fagon JY. HAP epidemiology. Am J Respir Crit Care Med. 2002;165:867-903. doi:10.1164/ajrccm.165.7.2105078
- 22. Melsen WG, et al. Mortality in VAP. Lancet Infect Dis. 2013;13:665-671. doi:10.1016/S1473-3099(13)70036-3
- 23. Irwin RS. Mechanical ventilation fundamentals. Chest. 2008;133:539-548. doi:10.1378/chest.07-0551
- 24. Koenig SM, Truwit JD. VAP burden. Nat Rev Microbiol. 2006;4:972-983. doi:10.1038/nrmicro1553
- 25. Koulenti D, et al. Pathogen variation in VAP. Intensive Care Med. 2009;35:1319-1327. doi:10.1007/s00134-009-1506-9
- 26. Conway Morris A, et al. Immune dysfunction in ICU. Thorax. 2013;68:121-127. doi:10.1136/thoraxjnl-2012-201781
- 27. Bassi GL, et al. Prevention strategies. Lancet Respir Med. 2017;5:919-928. doi:10.1016/S2213-2600(17)30346-5