Journal of Population Therapeutics & Clinical Pharmacology

RESEARCH ARTICLE DOI: 10.53555/08y4wh30

ANTERIOR-TO-POSTERIOR SCREW FIXATION VS POSTEROLATERAL PLATE FOR POSTERIOR MALLEOLUS IN TRIMALLEOLAR ANKLE FRACTURES

Syed Amir Ali Shah¹, Nasir Ahmed^{2*}, Muhammad Hamayun Hameed³, Syed Danish Ali⁴, Ghazanfar Ali Shah⁵, Muzaffar Rasool⁶

- ^{1.}*Syed Amir Ali Shah, Consultant Orthopaedic Surgeon, Almana General Hospital KSA. email: aamirorthopedics@gmail.com
- ² Nasir Ahmed, Assistant Professor Orthopaedic, Liaquat National Hospital and Medical College Karachi Pakistan. email: drnasirlnh@gmail.com
 - ³ Muhammad Hamayun Hameed, Associate Professor Orthopaedic, Bolan Medical Complex Hospital Quetta Pakistan. email: hamayunortho@gmail.com
- ^{4.} Syed Danish Ali, Associate Professor Orthopaedic, Fazaia Ruth pfau Medical College Hospital PAF Base Faisal Karachi Pakistan. email: Drsyeddanishalia@hotmail.com
- ^{5.}Ghazanfar Ali Shah, Consultant Orthopaedic Surgeon, Shaheed Mohtarma Benazir Bhutto Institute Of Trauma, (SMBB-IT) / Assistant Professor, Dow University Of Health Sciences, DUHS Karachi Pakistan. email: ghazi9321@gmail.com
- ⁶ Muzaffar Rasool, Senior Registrar Orthopaedic Surgery, Teaching Hospital Noshki Balochistan Pakistan. email: muzaffarrasoolkurd@gmail.com

*Corresponding Author: Nasir Ahmed

* Assistant Professor Orthopaedic, Liaquat National Hospital and Medical College Karachi Pakistan. email: drnasirlnh@gmail.com

ABSTRACT

Background: It has been observed that posterior malleolar fractures occur in about 7% to 44% of all ankle fractures. Posterior malleolus (PM) refers to some malleolar fractures which involve a fracture of the posterior lip of distal tibia. Research says that posterior tibial margin plays a crucial role in the maintenance of ankle stability and bearing of weight. The standard approach to treat lateral and medial malleolus fractures is selecting a surgical treatment with open reduction and internal fixation.

Objective: To compare posterolateral plate fixation with anterior-to-posterior screw fixation

Study design: A randomised comparative study

Duration and place of study: This study was conducted at Liaquat National Hospital and Medical College Karachi from June 2024 to June 2025

Methodology: This study included all the patients who were having trimalleolar ankle fracture and were admitted in the hospital. All of the participants later underwent surgical stabilisation of all 3 malleolar fragments. The participants were aged from 18 years to 60 years. Participants were divided into 2 groups by using computerised random numbering. Anterior-to-posterior screw

fixation was done in group A while posterolateral plate fixation (open reduction and internal fixation) was done in group B.

Results: There were a total of 60 patients involved in this study. The participants were aged from 18 years to 60 years. All of them were divided into 2 groups of equal population (30 patients in each group). Anterior-to-posterior screw fixation was done in group A while posterolateral plate fixation (open reduction and internal fixation) was done in group B. 26.7% results were excellent in group A while 40% results were excellent in group B.

Conclusion: By fixing the posterior malleolar fracture, the stability and recovery is improved, making syndesmotic screws unnecessary. Therefore, it should be fixed in all cases regardless of size.

INTRODUCTION

It has been observed that posterior malleolar fractures occur in about 7% to 44% of all ankle fractures [1]. Posterior malleolus (PM) refers to some malleolar fractures which involve a fracture of the posterior lip of distal tibia [2]. Usually, the posteromedial part of the tibial plafond or the posterior tubercle of the distal tibia is included in these types of fractures [3]. Research says that posterior tibial margin plays a crucial role in the maintenance of ankle stability and bearing of weight [4,5]. If this area is affected and injured, it can lead to degenerative ankle arthritis. When the displaced fragment includes more than 25% to 35% of the articular surface of the distal tibia, it becomes an indication to fix the posterior malleolar fracture [6].

The standard approach to treat lateral and medial malleolus fractures is selecting a surgical treatment with open reduction and internal fixation [7]. Posterior malleolus fractures are usually left unfixed because after the open reduction of the lateral malleolus, they are expected to realign automatically. However, debate is still going on related to ankle fractures involving the posterior malleolus and which types of fractures actually need posterior malleolus fixation [8]. Studies suggest that instead of direct fixation of posterior malleolus, trans-syndesmotic fixation can be sufficient [9,10]. For the open reduction and internal fixation of posterior malleolar fragments, there have been only a few surgical techniques described [11]. Moreover, there is very limited research about the best treatment for different fracture patterns. Furthermore, there is also very limited research on the most suitable fixation method for trimalleolar fractures. Therefore, we have conducted this study to compare posterolateral plate fixation with anterior-to-posterior screw fixation, two fixation methods for posterior malleolus fractures in trimalleolar ankle injuries.

METHODOLOGY

This study is a randomised comparative study which included all the patients who were having trimalleolar ankle fracture and were admitted in the hospital. All of the participants later underwent surgical stabilisation of all 3 malleolar fragments. The participants were aged from 18 years to 60 years. All the participants were informed about this study and their written consent was obtained.

Exclusion criteria: Patients with pilon fracture were not a part of this study. Moreover, those who had additional contralateral and ipsilateral lower extremity injury were also not a part of this study. Lastly, those who had a history of a lower extremity fracture were also excluded.

Those patients who were fully filling the inclusion criteria were selected and the investigator approached them by himself. Later, their detailed history was obtained. Participants' thorough systemic and general examination was done. Special and routine investigation including radiological and biochemical was performed. Participants were divided into 2 groups by using computerised random numbering. Anterior-to-posterior screw fixation was done in group A while posterolateral plate fixation (open reduction and internal fixation) was done in group B. Both the

fixation was performed by one designated orthopaedic surgeon to eliminate surgeon bias. All the participants were evaluated radiologically and clinically for bone strength, union, deformity, and weight-bearing ability. The range of motion was evaluated at 2 weeks, 6 weeks, and then up to 6 months. MS Excel, SPSS, and Primer were used to analyse the data.

RESULTS

There were a total of 60 patients involved in this study. The participants were aged from 18 years to 60 years. All of them were divided into 2 groups of equal population (30 patients in each group). Anterior-to-posterior screw fixation was done in group A while posterolateral plate fixation (open reduction and internal fixation) was done in group B. Table number 1 shows the distribution of the patients according to gender.

Table No. 1:

Gender	Group A (n=30)		Group B (n=30)	
	N	%	N	%
Female	12	40	6	20
Male	18	60	24	80

Table number 2 shows the details of the parameters in both the groups.

Table No. 2:

Parameters	Group A		Group B		
	N	%	N	%	
Type of fracture					
• Close	14	46.7	16	53.3	
• Open	16	53.3	14	46.7	
Mean ± SD					
Age (yrs)	39.08 ± 10.01		36.44 ± 6.9	36.44 ± 6.95	
Weight-bearing (weeks)	7.04 ± 0.73		12.02 ± 1.5	12.02 ± 1.50	

Table number 3 shows the functional results.

Table No. 3:

Results	Group A (n=30)		Group B (n=30)	
	N	%	N	%
Poor	5	16.6	3	10.0
Good	17	56.7	15	50.0
Excellent	8	26.7	12	40.0

DISCUSSION

Ankle fractures are very common nowadays. They make up about 3.92% of all body fractures [12]. Posterior malleolar fractures occur in about 7% to 44% of all ankle fractures [1]. Mostly, the orthopedic surgeons either use a screw to fix the medial malleolus or use a plate to fix the lateral malleolus [13]. It is because these are the only simple and effective procedures. There is no need for deep surgical exploration because both malleoli lie just beneath the skin. The result is that the posterior malleolus is often left unfixed.

The posterolateral plate fixation plays a key role in maintaining the stability of the ankle syndesmosis. The stability of the tibiofibular syndesmosis can be affected when a posterior malleolus fracture occurs [14]. The posterior syndesmotic ligaments often stay attached to the fractured bone fragment in such cases. In our study, we evaluated a total of 60 patients who were divided into 2 groups. Each group had 30 patients. Anterior-to-posterior screw fixation was done in group A while posterolateral plate fixation (open reduction and internal fixation) was done in group B. A similar study was conducted by Timothy et al. who performed this study on 27 participants [15]. Our results were similar to their study. In our study, 16.6.% participants' results were poor, 56.7% participants' results were good, and 26.7% participants; results were excellent in group A. On the other side, 10% participants' results were poor, 50% participants' results were good, and 40% participants' results were excellent in group B. Similar results were observed in other studies as well [16,17,18]. Another study by Sinan Karaca et al. observed that the results were excellent in 21 patients and good in 26 patients [19]. Vidović D et al. evaluated 46 patients and showed similar results to our study [20].

CONCLUSION

By fixing the posterior malleolar fracture, the stability and recovery is improved, making syndesmotic screws unnecessary. Therefore, it should be fixed in all cases regardless of size.

Funding source

This study was conducted without receiving financial support from any external source.

Conflict in the interest

The authors had no conflict related to the interest in the execution of this study.

Permission

Prior to initiating the study, approval from the ethical committee was obtained to ensure adherence to ethical standards and guidelines.

REFERENCES

- 1. O'Connor TJ, Mueller B, Ly TV, Jacobson AR, Nelson ER, Cole PA. "A to p" screw versus posterolateral plate for posterior malleolus fixation in trimalleolar ankle fractures. Journal of orthopaedic trauma. 2015 Apr 1;29(4):e151-6.
- 2. Wang Z, Sun J, Yan J, Gao P, Zhang H, Yang Y, Jin Q. Comparison of the efficacy of posterior-anterior screws, anterior-posterior screws and a posterior-anterior plate in the fixation of posterior malleolar fractures with a fragment size of≥ 15 and< 15%. BMC musculoskeletal disorders. 2020 Aug 22;21(1):570.
- 3. Wang J, Jia HB, Zhao JG, Wang J, Zeng XT. Plate versus screws fixation for the posterior malleolar fragment in trimalleolar ankle fractures. Injury. 2023 Feb 1;54(2):761-7.
- 4. Zhong S, Shen L, Zhao JG, Chen J, Xie JF, Shi Q, Wu YH, Zeng XT. Comparison of posteromedial versus posterolateral approach for posterior malleolus fixation in trimalleolar ankle fractures. Orthopaedic Surgery. 2017 Feb;9(1):69-76.
- 5. Gao Y, Liu Y, Zhao Y, Shan L, Wang H, Xu X, Zhao B, Zhou J. Comparison between anterior-to-posterior screw fixation versus posterolateral approach plate fixation for posterior malleous

- fracture: a systematic review and meta-analysis. Foot and Ankle Surgery. 2024 Oct 1;30(7):594-602.
- 6. Kalem M, Şahin E, Songür M, Keser S, Kinik H. Comparison of three posterior malleolar fixation methods in trimalleolar ankle fractures. Acta Orthop Belg. 2018 Jun 1;84(2):203-12.
- 7. Talbot M, Steenblock TR, Cole PA. Surgical technique: posterolateral approach for open reduction and internal fixation of trimalleolar ankle fractures. Canadian journal of surgery. 2005 Dec;48(6):487.
- 8. Ceccarini P, Donantoni M, Milazzo F, Prezioso V, Petruccelli R, Samaila EM, Marcolli D, Leigheb M, Rinonapoli G, Caraffa A. Fixation of posterior malleolus in trimalleolar ankle fractures: anteroposterior screw or posterolateral plate?. Applied Sciences. 2024 Jan 17;14(2):802.
- 9. Hoogendoorn JM. Posterior malleolar open reduction and internal fixation through a posterolateral approach for trimalleolar fractures. JBJS Essential Surgical Techniques. 2017 Oct 11;7(4):e31.
- 10. Chang CW, Chen YN, Jhong GH, Su KC, Li CT. A biomechanical comparison of posterior malleolar fracture fixation using screws and locking plates in Trimalleolar fractures: a finite element study. BMC Musculoskeletal Disorders. 2025 Feb 7;26(1):131.
- 11. Koval KJ, Lurie J, Zhou W, Sparks MB, Cantu RV, Sporer SM, et al. Ankle fractures in the elderly: What you get depends on where you live and who you see. J Orthop Trauma. 2005;19:635-9
- 12. Jaskulka RA, Ittner G, Schedl R. Fractures of the posterior tibial margin: Their role in the prognosis of malleolar fractures. J Trauma. 1989;29:1565-70.
- 13. Bois AJ, Dust W. Posterior fracture dislocation of the ankle: Technique and clinical experience using a posteromedial surgical approach. J Orthop Trauma. 2008;22:629-36.
- 14. Marsh JL, Saltzman CL. Ankle fractures. In: Bucholz RW, Heckman JD, Court-Brown CM, editors. Rockwood and Green's Fractures in Adults. 6th ed. Philadelphia, PA: Lippincott Williams and Wilkins, 2005, 2147-235.
- 15. Timothy O'Connor J, Muller B. A to P" Screw Versus Posterolateral Plate for Posterior Malleolus Fixation in Trimalleolar Ankle Fractures. Journal of Orthopaedic Trauma. 2014;29(4):11-14.
- 16. Harper MC. Talar shift. The stabilizing role of the medial, lateral, and posterior ankle structures. Clin Orthop Relat Res. 1990;257:177-83
- 17. Gardner MJ, Brodsky A, Briggs SM, Nielson JH, Lorich DG. Fixation of posterior malleolar fractures provides greater syndesmotic stability. Clin Orthop Relat Res. 2006;447:165-71.
- 18. Miller AN, Carroll EA, Parker RJ, Helfert DL, Lorich DG. Posterior malleolar stabilization of syndesmotic injuries is equivalent to screw fixation. Clin Orthop Relat Res. 2010;468:1129-35.
- 19. Sinan Karaca MD, Meriç Enercan. Importance of fixation of posterior malleolus fracture in trimalleolar fractures: A retrospective study. Ulus Travma Acil Cerrahi Derg, November. 2016:22(6):350-4
- 20. Vidović D, Elabjer E, Muškardin IVA. Posterior fragment in ankle fractures: anteroposterior vs posteroanterior fixation. Injury. 2017; Nov;(5):S65-S69.