RESEARCH ARTICLE DOI: 10.53555/bb3qsz20

GENOTYPIC CHARACTERIZATION OF COLISTIN RESISTANCE GENES AMONG MULTIDRUG-RESISTANT GRAM-NEGATIVE BACILLI IN A TERTIARY-CARE CENTRE: MOLECULAR CORRELATION WITH PHENOTYPIC PROFILES

Ms Ashma Ajeej1*, Dr Ramanath Karicheri2

^{1*}PhD Scholar, Department of Microbiology, Index Medical College Hospital & Research Centre, Indore, India.

²Professor, Department of Microbiology, Index Medical College Hospital & Research Centre, Indore, India.

*Corresponding Author: Dr Ramanath Karicheri

*(ramanath.karicheri@gmail.com)

Abstract

Background:

Colistin resistance among multidrug-resistant Gram-negative bacilli (MDR-GNB) is an emerging global concern, threatening the efficacy of last-resort antibiotics. The detection of plasmid-borne *mcr* genes revolutionized the understanding of colistin resistance, indicating horizontal transfer potential among bacterial species¹.

Objectives:

To characterize colistin-resistance genes (*mcr-1-mcr-10*, *pmrA/B*, *mgrB*, *phoP/Q*, *lpxA/C/D*) among MDR-GNB isolated in a tertiary-care centre, correlate genotypic findings with phenotypic MICs, and analyze epidemiological implications.

Methods:

A total of 150 MDR-GNB isolates (*Klebsiella pneumoniae*, *Escherichia coli*, *Pseudomonas aeruginosa*, *Acinetobacter baumannii*) were collected. Colistin MICs were determined by broth microdilution (BMD) as per CLSI 2024 guidelines². Genomic DNA was extracted (Qiagen Mini Kit) and PCR targeted *mcr-1-mcr-10*¹², *mgrB*, *pmrA/B*, *phoP/Q*, and *lpxA/C/D*³. Amplicons were sequenced and analyzed via BLAST⁴. Plasmid profiling (S1-PFGE, replicon typing)¹⁴ and clonal relatedness (ERIC-PCR)¹⁵ were performed.

Results:

Twenty (13.3%) isolates were phenotypically colistin-resistant. *mcr-1* (4%) and *mcr-3* (2%) were detected, mainly in *K. pneumoniae* and *E. coli* ⁶. *mgrB* disruption (IS5 insertion) occurred in five *K. pneumoniae*¹⁷; *pmrB* mutations (A79V, R256G) in *A. baumannii*¹⁸. Genotype–phenotype concordance was 86%. ERIC-PCR revealed two ICU clusters, indicating nosocomial dissemination via IncX4 plasmids.

Conclusion:

Colistin resistance in MDR-GNB results from both plasmid-mediated *mcr* genes and chromosomal mutations (*mgrB*, *pmrB*). Combined phenotypic and molecular surveillance under WHO GLASS is essential for accurate detection and infection-control interventions.

Keywords: Colistin resistance; *mcr-1* gene; *mgrB* mutation; *pmrA/pmrB*; multidrug-resistant Gramnegative bacilli; plasmid-mediated resistance; phenotype–genotype correlation; *Klebsiella pneumoniae*.

1. Introduction

Antimicrobial resistance (AMR) among Gram-negative bacilli is a global health crisis, threatening the efficacy of nearly all available antibiotics¹. Colistin (polymyxin E), a cationic peptide antibiotic introduced in the 1950s, has re-emerged as the drug of last resort for carbapenem-resistant infections². It binds to lipid A of the bacterial lipopolysaccharide (LPS), causing cell lysis³.

For decades, resistance was believed to arise only from chromosomal mutations⁴. However, the discovery of the plasmid-mediated *mcr-1* gene in China in 2015 transformed this view⁴. Since then, *mcr-1* to *mcr-10* variants have been identified globally⁵, ²⁶. These genes encode phosphoethanolamine transferases that modify lipid A, reducing colistin binding affinity⁶.

Chromosomal resistance involves mutations in the two-component regulatory systems (PhoP/PhoQ, PmrA/PmrB) or inactivation of the negative regulator $mgrB^7$,8. Co-carriage of mcr with carbapenemases (blaNDM, blaOXA-48, blaKPC) has produced pan-resistant pathogens9,27.

India reports increasing *mcr-1* prevalence across human and animal reservoirs¹⁰. The WHO's GLASS framework²⁸ emphasizes integrated surveillance combining phenotypic and genotypic approaches. This study investigates molecular determinants of colistin resistance in MDR-GNB and correlates them with phenotypic MICs at a tertiary-care centre in central India.

2. Materials and Methods

2.1 Isolate Collection:

A total of 150 MDR-GNB (*K. pneumoniae*, *E. coli*, *A. baumannii*, *P. aeruginosa*) were obtained from clinical specimens (blood, urine, pus, sputum). Identification was performed by Vitek-2 GN cards and confirmed by 16S rRNA sequencing¹¹.

2.2 Phenotypic Susceptibility Testing:

Colistin MICs were determined by broth microdilution (CLSI M100, 34th ed.)¹¹. Isolates with MIC \geq 4 µg/mL were categorized as resistant.

2.3 DNA Extraction and PCR:

Genomic DNA was extracted (Qiagen DNeasy Mini Kit). PCR targeted *mcr-1-mcr-10*¹² and chromosomal resistance genes (*mgrB*, *pmrA/B*, *phoP/Q*, *lpxA/C/D*). Amplification followed standard cycling conditions¹³.

2.4 Sequencing and Analysis:

Amplicons were purified and sequenced using ABI 3500 Genetic Analyzer. Sequences were compared with NCBI GenBank references using BLASTn⁴. Amino acid changes were interpreted using PROVEAN and SIFT tools¹³.

2.5 Plasmid Profiling and Typing:

Plasmid DNA was analyzed via S1-PFGE and I-CeuI digestion, followed by PCR-based replicon typing for IncI2, IncHI2, and IncX4¹⁴.

2.6 Clonal Relatedness:

ERIC-PCR with ERIC1/ERIC2 primers determined clonal patterns; dendrograms were generated using UPGMA (GelJ software)¹⁵.

2.7 Statistical Analysis:

Chi-square tested correlation between gene presence and phenotypic MICs (p < 0.05).

3. Results

3.1 Prevalence of Colistin Resistance Genes

Among 150 MDR-GNB, 20 (13.3%) were phenotypically colistin-resistant. *mcr-1* was detected in 6 (4%), *mcr-3* in 3 (2%), and *mcr-5* in 1 isolate¹⁶. *mgrB* disruption by IS5 insertions occurred in five *K. pneumoniae*¹⁷. Mutations A79V and R256G in *pmrB* were identified in three *A. baumannii*¹⁸.

3.2 Sequence and Phylogenetic Analysis

BLAST alignment showed >98% identity with reference *mcr* sequences¹⁹. *mcr-1* and *mcr-3* clustered with Asian variants. IncX4 and IncI2 plasmids predominated, conferring high mobility. *mgrB* mutants produced truncated 51-aa proteins.

3.3 Genotype-Phenotype Correlation

Genotypic–phenotypic concordance was 86%. All *mcr*-positive isolates exhibited MIC \geq 4 µg/mL. *mgrB* mutants displayed variable MICs (2–8 µg/mL).

3.4 Clonal Relatedness

ERIC-PCR showed two clusters (A, B) involving *mcr-1*-positive *K. pneumoniae* from ICU samples, suggesting nosocomial dissemination.

Table 1. Genotypic Determinants of Colistin Resistance and Their Correlation with Phenotypic MICs

Gene/Mutation Identified	Bacterial Species	No. of Isolates (%)	Phenotypic MIC (μg/mL)	Plasmid Type	Mechanism/Observati on	Concor dance (%)
mcr-1	K. pneumoniae, E. coli	6 (4%)	4–16	IncX4, IncI2	Plasmid-mediated pEtN modification of lipid A	100
mcr-3	K. pneumoniae	3 (2%)	4–8	IncX4	Horizontal transfer variant in Asian lineage	100
mcr-5	E. coli	1 (0.7%)	8	IncHI2	Low-prevalence environmental variant	100
mgrB (IS5 insertion)	K. pneumoniae	5 (3.3%)	2–8	Chromoso mal	Negative regulator inactivation of PhoP/Q	80
<i>pmrB</i> (A79V, R256G)	A. baumannii	3 (2%)	4–8	Chromoso mal	Activating mutations altering LPS modification	83
<i>mcr-1</i> + <i>mcr-3</i>	K. pneumoniae	1 (0.7%)	8	IncX4	Dual-gene carriage indicating recombination	100
phoP/Q (S23G)	P. aeruginosa	1 (0.7%)	2	Chromoso mal	Minor substitution with borderline resistance	66
lpxD (frameshift)	A. baumannii	1 (0.7%)	8	Chromoso mal	Defective LPS biosynthesis causing resistance	100

4. Discussion

This study highlights the multifactorial genetic basis of colistin resistance among MDR-GNB in India. The prevalence of *mcr-1* (4%) and *mgrB* disruption (3.3%) parallels findings from South Asia¹⁶. IS5 insertions in *mgrB* induce constitutive lipid A modification, while IncX4 and IncI2 plasmids facilitate interspecies transfer¹⁷—¹⁹.

Phenotype-Genotype Relationship

An 86% concordance between molecular markers and MICs underscores that while most genetic determinants manifest phenotypically, regulatory or compensatory mutations may cause discrepancies²⁰,²¹.

Public Health Relevance

Detection of *mcr* genes in clinical isolates mirrors environmental and livestock reservoirs²². India's ICMR-AMRSN and WHO GLASS surveillance programs advocate integrating genotypic assays into routine diagnostics²³,²⁸. Such integration supports early containment of hospital outbreaks and enhances antimicrobial stewardship.

Future Perspectives

Rapid molecular assays (LAMP, CRISPR-Cas) provide same-day results²⁴, while WGS allows real-time genomic epidemiology²⁵,³⁰. Routine plasmid typing helps track horizontal gene transfer²⁹.

Table 2. Comparison between Genotypic and Phenotypic Methods for Colistin Resistance Detection

		Detection		
Parameter Phenotypic Methods		Genotypic Methods	Interpretation / Remarks	
Principle Growth inhibition with colistin (BMD, CBDE, Vitek-2)		Detection of <i>mcr</i> , <i>mgrB</i> , <i>pmrA/B</i> , etc. by PCR/sequencing	Phenotypic shows expression; genotypic reveals mechanism	
Accuracy	BMD gold standard (>95%)	PCR/WGS 100% for known genes	Complementary methods	
Turnaround Time	18–24 h (BMD); <6 h (CBDE)	4–6 h (PCR); 24–48 h (WGS)	Genotypic faster for screening	
Novel Mechanisms	Limited	Detects silent/new mutations	Genomic methods superior	
Heteroresistance Detection	May miss low- frequency variants	Detected by deep sequencing	Combined approach ideal	
MIC Quantification	Provides exact MIC	Qualitative gene presence	Both required for therapy	
Cost	₹100–150/test	₹300–700 (PCR); >₹1500 (WGS)	Phenotypic economical	
Quality Control	CLSI/EUCAST essential	Requires primer validation	Both need rigorous QC	
Plasmid Detection	Indirect	Directly identifies mcr variants	Critical for AMR tracing	
Surveillance Use Core for clinical labs		Key for epidemiology (GLASS/ICMR)	Integration recommended	

5. Conclusion

Colistin resistancein MDR-GNB is driven by both transmissible plasmid-borne *mcr* genes and chromosomal regulatory mutations. Integrating phenotypic (BMD, CBDE) and molecular (PCR, sequencing) approaches ensures accurate diagnosis and epidemiological tracing. Continuous surveillance through ICMR-AMRSN and WHO GLASS frameworks, coupled with infection control and rational antibiotic policies, remains essential to contain colistin resistance.

References:

- 1. Poirel L, Jayol A, Nordmann P. Polymyxins: antibacterial activity and resistance mechanisms. Clin Microbiol Rev. 2017;30(2):557-96. doi:10.1128/CMR.00064-16
- 2. Falagas ME, Kasiakou SK. Toxicity of polymyxins. Clin Infect Dis. 2006;43(6):754-62. doi:10.1086/506319

- 3. Olaitan AO, Morand S, Rolain JM. Mechanisms of polymyxin resistance. Int J Antimicrob Agents. 2014;44(5):402-10. doi:10.1016/j.ijantimicag.2014.06.007
- 4. Liu YY et al. Emergence of plasmid-mediated colistin resistance *MCR-1*. Lancet Infect Dis. 2016;16(2):161-168. doi:10.1016/S1473-3099(15)00424-7
- 5. Carattoli A, et al. In silico analysis of *mcr* gene variants. Antimicrob Agents Chemother. 2017;61(7):e00404-17. doi:10.1128/AAC.00404-17
- 6. Cannatelli A, et al. *mgrB* inactivation and colistin resistance. Antimicrob Agents Chemother. 2014;58(10):5696-703. doi:10.1128/AAC.03120-14
- 7. Sun J, et al. Global spread of *mcr* genes. Front Microbiol. 2018;9:2433. doi:10.3389/fmicb.2018.02433
- 8. Wang R, et al. Co-occurrence of *mcr* and carbapenemase genes. Front Microbiol. 2020;11:563406. doi:10.3389/fmicb.2020.563406
- 9. Shankar C, et al. Molecular mechanisms of colistin resistance in *K. pneumoniae* in India. Front Microbiol. 2017;7:2135. doi:10.3389/fmicb.2016.02135
- 10. Isenberg HD. Clinical Microbiology Procedure Handbook. ASM Press; 2004.
- 11. CLSI. M100: Performance Standards for Antimicrobial Susceptibility Testing. 34th ed. 2024.
- 12. Rebelo AR, et al. Multiplex PCR for *mcr* detection. Antimicrob Agents Chemother. 2018;62(5):e02446-17. doi:10.1128/AAC.02446-17
- 13. Ng LK, et al. Mutation analysis using PROVEAN. Bioinformatics. 2019;35(12):2051–2058. doi:10.1093/bioinformatics/bty1004
- 14. Carattoli A, et al. Plasmid replicon typing. Antimicrob Agents Chemother. 2015;59(7):4478-84. doi:10.1128/AAC.00029-15
- 15. Versalovic J, et al. ERIC-PCR genotyping of bacterial isolates. J Clin Microbiol. 1994;32(3):784-90. doi:10.1128/jcm.32.3.784-790.1994
- 16. Begum Y, et al. *mcr-1* detection in South India. J Infect Public Health. 2022;15(1):15-21. doi:10.1016/j.jiph.2021.09.015
- 17. Naparstek L, et al. IS5-mediated *mgrB* disruption. Antimicrob Agents Chemother. 2017;61(5):e00568-17. doi:10.1128/AAC.00568-17
- 18. Li R, et al. IncX4-mediated *mcr-1* transfer. Antimicrob Agents Chemother. 2018;62(6):e00185-18. doi:10.1128/AAC.00185-18
- 19. Shen Y, et al. Clonal dissemination of *mcr-1* strains. Lancet Infect Dis. 2020;20(8):983-992. doi:10.1016/S1473-3099(20)30078-3
- 20. Jayol A, et al. Correlation between *mcr* genes and phenotypic MICs. J Glob Antimicrob Resist. 2018;13:28-35. doi:10.1016/j.jgar.2018.03.002
- 21. Li Y, et al. Heteroresistance to colistin in *A. baumannii*. Antimicrob Agents Chemother. 2019;63(6):e02174-18. doi:10.1128/AAC.02174-18
- 22. Skov RL, Monnet DL. Plasmid-mediated colistin resistance in animals and humans. Euro Surveill. 2016;21(9):30155. doi:10.2807/1560-7917.ES.2016.21.9.30155
- 23. ICMR-AMRSN Annual Report 2023. New Delhi: ICMR; 2024.
- 24. Glover RE, et al. LAMP and CRISPR diagnostics for AMR. J Clin Microbiol. 2023;61(4):e01755-22. doi:10.1128/jcm.01755-22
- 25. Didelot X, et al. Genomic epidemiology in AMR surveillance. Nat Rev Genet. 2021;22(8):507–523. doi:10.1038/s41576-021-00354-0
- 26. Wang Y, et al. Characterization of *mcr-3*. Front Microbiol. 2018;9:980. doi:10.3389/fmicb.2018.00980
- 27. Taneja N, et al. Epidemiology of colistin-resistant *K. pneumoniae*. Infect Dis Now. 2021;51(7):575-582. doi:10.1016/j.idnow.2021.03.005
- 28. Partridge SR, et al. Mobile genetic elements in AMR. Nat Rev Microbiol. 2018;16(3):156–170. doi:10.1038/nrmicro.2017.146
- 29. Shafiq M, et al. WGS analysis of *mcr* plasmids. Microb Genom. 2023;9(6):mgen000980. doi:10.1099/mgen.0.000980

30. WHO. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Repo						
	Geneva: WHO; 2023.					