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Abstract 

Background: 

Colistin resistance among multidrug-resistant Gram-negative bacilli (MDR-GNB) is an emerging 

global concern, threatening the efficacy of last-resort antibiotics. The detection of plasmid-borne mcr 

genes revolutionized the understanding of colistin resistance, indicating horizontal transfer potential 

among bacterial species¹. 

Objectives: 

To characterize colistin-resistance genes (mcr-1–mcr-10, pmrA/B, mgrB, phoP/Q, lpxA/C/D) among 

MDR-GNB isolated in a tertiary-care centre, correlate genotypic findings with phenotypic MICs, and 

analyze epidemiological implications. 

Methods: 

A total of 150 MDR-GNB isolates (Klebsiella pneumoniae, Escherichia coli, Pseudomonas 

aeruginosa, Acinetobacter baumannii) were collected. Colistin MICs were determined by broth 

microdilution (BMD) as per CLSI 2024 guidelines². Genomic DNA was extracted (Qiagen Mini Kit) 

and PCR targeted mcr-1–mcr-10¹², mgrB, pmrA/B, phoP/Q, and lpxA/C/D³. Amplicons were 

sequenced and analyzed via BLAST⁴. Plasmid profiling (S1-PFGE, replicon typing)¹⁴ and clonal 

relatedness (ERIC-PCR)¹⁵ were performed. 

Results: 

Twenty (13.3%) isolates were phenotypically colistin-resistant. mcr-1 (4%) and mcr-3 (2%) were 

detected, mainly in K. pneumoniae and E. coli ⁶. mgrB disruption (IS5 insertion) occurred in five K. 

pneumoniae¹⁷; pmrB mutations (A79V, R256G) in A. baumannii¹⁸. Genotype–phenotype concordance 

was 86%. ERIC-PCR revealed two ICU clusters, indicating nosocomial dissemination via IncX4 

plasmids. 

Conclusion: 

Colistin resistance in MDR-GNB results from both plasmid-mediated mcr genes and chromosomal 

mutations (mgrB, pmrB). Combined phenotypic and molecular surveillance under WHO GLASS is 

essential for accurate detection and infection-control interventions. 
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1. Introduction 

Antimicrobial resistance (AMR) among Gram-negative bacilli is a global health crisis, threatening 

the efficacy of nearly all available antibiotics¹. Colistin (polymyxin E), a cationic peptide antibiotic 

introduced in the 1950s, has re-emerged as the drug of last resort for carbapenem-resistant infections². 

It binds to lipid A of the bacterial lipopolysaccharide (LPS), causing cell lysis³. 

For decades, resistance was believed to arise only from chromosomal mutations⁴. However, the 

discovery of the plasmid-mediated mcr-1 gene in China in 2015 transformed this view⁴. Since then, 

mcr-1 to mcr-10 variants have been identified globally⁵,²⁶. These genes encode phosphoethanolamine 

transferases that modify lipid A, reducing colistin binding affinity⁶. 

Chromosomal resistance involves mutations in the two-component regulatory systems (PhoP/PhoQ, 

PmrA/PmrB) or inactivation of the negative regulator mgrB⁷,⁸. Co-carriage of mcr with 

carbapenemases (blaNDM, blaOXA-48, blaKPC) has produced pan-resistant pathogens⁹,²⁷. 

India reports increasing mcr-1 prevalence across human and animal reservoirs¹⁰. The WHO’s GLASS 

framework²⁸ emphasizes integrated surveillance combining phenotypic and genotypic approaches. 

This study investigates molecular determinants of colistin resistance in MDR-GNB and correlates 

them with phenotypic MICs at a tertiary-care centre in central India. 

 

2. Materials and Methods 

2.1 Isolate Collection: 

A total of 150 MDR-GNB (K. pneumoniae, E. coli, A. baumannii, P. aeruginosa) were obtained from 

clinical specimens (blood, urine, pus, sputum). Identification was performed by Vitek-2 GN cards and 

confirmed by 16S rRNA sequencing¹¹. 

 

2.2 Phenotypic Susceptibility Testing: 

Colistin MICs were determined by broth microdilution (CLSI M100, 34th ed.)¹¹. Isolates with MIC ≥ 

4 µg/mL were categorized as resistant. 

 

2.3 DNA Extraction and PCR: 

Genomic DNA was extracted (Qiagen DNeasy Mini Kit). PCR targeted mcr-1–mcr-10¹² and 

chromosomal resistance genes (mgrB, pmrA/B, phoP/Q, lpxA/C/D). Amplification followed standard 

cycling conditions¹³. 

 

2.4 Sequencing and Analysis: 

Amplicons were purified and sequenced using ABI 3500 Genetic Analyzer. Sequences were compared 

with NCBI GenBank references using BLASTn⁴. Amino acid changes were interpreted using 

PROVEAN and SIFT tools¹³. 

 

2.5 Plasmid Profiling and Typing: 

Plasmid DNA was analyzed via S1-PFGE and I-CeuI digestion, followed by PCR-based replicon 

typing for IncI2, IncHI2, and IncX4¹⁴. 

 

2.6 Clonal Relatedness: 

ERIC-PCR with ERIC1/ERIC2 primers determined clonal patterns; dendrograms were generated 

using UPGMA (GelJ software)¹⁵. 

 

 

 

https://jptcp.com/index.php/jptcp/issue/view/79


Genotypic Characterization Of Colistin Resistance Genes Among Multidrug-Resistant Gram-Negative Bacilli In A 

Tertiary-Care Centre: Molecular Correlation With Phenotypic Profiles 

 

Vol.32 No. 08 (2025) JPTCP (1549-1554)  Page | 1551 

2.7 Statistical Analysis: 

Chi-square tested correlation between gene presence and phenotypic MICs (p < 0.05). 

 

3. Results 

3.1 Prevalence of Colistin Resistance Genes 

Among 150 MDR-GNB, 20 (13.3%) were phenotypically colistin-resistant. mcr-1 was detected in 6 

(4%), mcr-3 in 3 (2%), and mcr-5 in 1 isolate¹⁶. mgrB disruption by IS5 insertions occurred in five K. 

pneumoniae¹⁷. Mutations A79V and R256G in pmrB were identified in three A. baumannii¹⁸. 

 

3.2 Sequence and Phylogenetic Analysis 

BLAST alignment showed >98% identity with reference mcr sequences¹⁹. mcr-1 and mcr-3 clustered 

with Asian variants. IncX4 and IncI2 plasmids predominated, conferring high mobility. mgrB mutants 

produced truncated 51-aa proteins. 

 

3.3 Genotype–Phenotype Correlation 

Genotypic–phenotypic concordance was 86%. All mcr-positive isolates exhibited MIC ≥ 4 µg/mL. 

mgrB mutants displayed variable MICs (2–8 µg/mL). 

 

3.4 Clonal Relatedness 

ERIC-PCR showed two clusters (A, B) involving mcr-1-positive K. pneumoniae from ICU samples, 

suggesting nosocomial dissemination. 

 

Table 1. Genotypic Determinants of Colistin Resistance and Their Correlation with 

Phenotypic MICs 

Gene/Mutation 

Identified 

Bacterial 

Species 

No. of 

Isolates 

(%) 

Phenotypic 

MIC 

(µg/mL) 

Plasmid 

Type 

Mechanism/Observati

on 

Concor

dance 

(%) 

mcr-1 

K. 

pneumoniae, 

E. coli 

6 (4%) 4–16 
IncX4, 

IncI2 

Plasmid-mediated pEtN 

modification of lipid A 
100 

mcr-3 
K. 

pneumoniae 
3 (2%) 4–8 IncX4 

Horizontal transfer 

variant in Asian lineage 
100 

mcr-5 E. coli 1 (0.7%) 8 IncHI2 
Low-prevalence 

environmental variant 
100 

mgrB (IS5 

insertion) 

K. 

pneumoniae 
5 (3.3%) 2–8 

Chromoso

mal 

Negative regulator 

inactivation of PhoP/Q 
80 

pmrB (A79V, 

R256G) 
A. baumannii 3 (2%) 4–8 

Chromoso

mal 

Activating mutations 

altering LPS 

modification 

83 

mcr-1 + mcr-3 
K. 

pneumoniae 
1 (0.7%) 8 IncX4 

Dual-gene carriage 

indicating 

recombination 

100 

phoP/Q (S23G) P. aeruginosa 1 (0.7%) 2 
Chromoso

mal 

Minor substitution with 

borderline resistance 
66 

lpxD 

(frameshift) 
A. baumannii 1 (0.7%) 8 

Chromoso

mal 

Defective LPS 

biosynthesis causing 

resistance 

100 

 

4. Discussion 

This study highlights the multifactorial genetic basis of colistin resistance among MDR-GNB in India. 

The prevalence of mcr-1 (4%) and mgrB disruption (3.3%) parallels findings from South Asia¹⁶. IS5 

insertions in mgrB induce constitutive lipid A modification, while IncX4 and IncI2 plasmids facilitate 

interspecies transfer¹⁷–¹⁹. 
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Phenotype–Genotype Relationship 

An 86% concordance between molecular markers and MICs underscores that while most genetic 

determinants manifest phenotypically, regulatory or compensatory mutations may cause 

discrepancies²⁰,²¹. 

 

Public Health Relevance 

Detection of mcr genes in clinical isolates mirrors environmental and livestock reservoirs²². India’s 

ICMR-AMRSN and WHO GLASS surveillance programs advocate integrating genotypic assays into 

routine diagnostics²³,²⁸. Such integration supports early containment of hospital outbreaks and 

enhances antimicrobial stewardship. 

 

Future Perspectives 

Rapid molecular assays (LAMP, CRISPR-Cas) provide same-day results²⁴, while WGS allows real-

time genomic epidemiology²⁵,³⁰. Routine plasmid typing helps track horizontal gene transfer²⁹. 

 

Table 2. Comparison between Genotypic and Phenotypic Methods for Colistin Resistance 

Detection 

Parameter 
Phenotypic 

Methods 
Genotypic Methods Interpretation / Remarks 

Principle 

Growth inhibition 

with colistin (BMD, 

CBDE, Vitek-2) 

Detection of mcr, mgrB, 

pmrA/B, etc. by 

PCR/sequencing 

Phenotypic shows 

expression; genotypic 

reveals mechanism 

Accuracy 
BMD gold standard 

(>95%) 

PCR/WGS 100% for known 

genes 
Complementary methods 

Turnaround 

Time 

18–24 h (BMD); <6 

h (CBDE) 
4–6 h (PCR); 24–48 h (WGS) 

Genotypic faster for 

screening 

Novel 

Mechanisms 
Limited Detects silent/new mutations Genomic methods superior 

Heteroresistance 

Detection 

May miss low-

frequency variants 
Detected by deep sequencing Combined approach ideal 

MIC 

Quantification 
Provides exact MIC Qualitative gene presence Both required for therapy 

Cost ₹100–150/test 
₹300–700 (PCR); >₹1500 

(WGS) 
Phenotypic economical 

Quality Control 
CLSI/EUCAST 

essential 
Requires primer validation Both need rigorous QC 

Plasmid 

Detection 
Indirect Directly identifies mcr variants Critical for AMR tracing 

Surveillance Use Core for clinical labs 
Key for epidemiology 

(GLASS/ICMR) 
Integration recommended 

 

5. Conclusion 

Colistin resistancein MDR-GNB is driven by both transmissible plasmid-borne mcr genes and 

chromosomal regulatory mutations. Integrating phenotypic (BMD, CBDE) and molecular (PCR, 

sequencing) approaches ensures accurate diagnosis and epidemiological tracing. Continuous 

surveillance through ICMR-AMRSN and WHO GLASS frameworks, coupled with infection control 

and rational antibiotic policies, remains essential to contain colistin resistance. 
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