Journal of Population Therapeutics & Clinical Pharmacology

RESEARCH ARTICLE DOI: 10.53555/4h0bcv02

CORONARY-ARTERY BYPASS SURGERY IN PATIENTS WITH ISCHEMIC CARDIOMYOPATHY

Ms. Kirti Bhardwaj^{1*}, Ms. Jyoti Ahlawat²

^{1*}PG Tutor, M.Sc. Medical Surgical Nursing, SGT University, Gurugram, Haryana, India ²PG Tutor, M.Sc. Mental Health Nursing, SGT University, Gurugram, Haryana, India

*Corresponding Author: Ms. Kirti Bhardwaj
*PG Tutor, M.Sc. Medical Surgical Nursing, SGT University, Gurugram, Haryana, India

Abstract

Background: Ischemic cardiomyopathy (ICM), resulting from chronic coronary artery disease and left ventricular dysfunction, remains a major contributor to global cardiovascular morbidity and mortality. Coronary artery bypass grafting (CABG) has long been investigated as a therapeutic strategy in this high-risk group.

Objective: To review and synthesize evidence from epidemiological data, randomized controlled trials (RCTs), meta-analyses, observational studies, and guidelines regarding the role of CABG in patients with ICM.

Findings: Epidemiological reports (Mozaffarian et al., 2016) emphasize the global burden of cardiovascular disease and the ongoing need for effective revascularization strategies. The Coronary Artery Surgery Study (CASS, 1983) and its subgroup analysis (Passamani et al., 1985) provided the first RCT evidence supporting CABG survival benefits, particularly in patients with low ejection fraction (EF). The STICH trial (Velazquez et al., 2011) further established CABG's mortality reduction compared with medical therapy in ischemic LV dysfunction. A meta-analysis by Yusuf et al. (1994) confirmed long-term survival advantages of CABG in multivessel disease. Observational evidence (Topkara et al., 2005) demonstrated the feasibility and improved outcomes of CABG in low EF patients with advances in surgical techniques. Clinical guidelines (Fihn et al., 2012; Yancy et al., 2013) integrated these findings into multidisciplinary management algorithms for stable ischemic heart disease and heart failure.

Conclusion: The cumulative evidence consistently supports CABG as a cornerstone therapy in ischemic cardiomyopathy, particularly in patients with multivessel CAD and reduced EF. With ongoing surgical innovations and guideline-directed application, CABG continues to play a vital role in improving survival and quality of life in this challenging population

Introduction

Ischemic cardiomyopathy (ICM) represents a major cause of heart failure and cardiovascular mortality worldwide. It results from chronic coronary artery disease (CAD) and myocardial ischemia, leading to left ventricular (LV) dysfunction. For decades, coronary artery bypass grafting (CABG) has been explored as a treatment option in this high-risk population. This review synthesizes evidence from landmark randomized controlled trials (RCTs), meta-analyses, observational studies, and guideline recommendations to outline the role of CABG in patients with ischemic cardiomyopathy.

Method:

This study is a narrative review that synthesized evidence from multiple sources, including epidemiological data, randomized controlled trials (RCTs), meta-analyses, observational cohort studies, and clinical guidelines. Literature was retrieved through PubMed, Google Scholar, and Web of Science using keywords such as "ischemic cardiomyopathy," "coronary artery bypass grafting," "CABG outcomes," "low ejection fraction," and "revascularization trials." Studies were selected based on their relevance, methodological rigor, and impact on current clinical practice. Landmark trials, guideline statements, and meta-analyses were prioritized. Data were summarized thematically to evaluate the role of CABG in improving survival and outcomes in patients with ischemic cardiomyopathy.

Author	Country	Study Design	Sample	Result	Discussion
Mozaffarian D,	USA (AHA)	Epidemiologi	National/glob	Provided annual	Highlights
Benjamin EJ, Go		cal report /	al population	update on heart	burden of CVD,
AS, et al. (2016)		update	data	disease and	trends, and
				stroke statistics	preventive
					implications
Coronary Artery	(CASS)	Randomized	CAD patients	CABG improved	First large RCT
Surgery Study	(1983)	controlled	undergoing	survival in	evidence for
(CASS) (1983)	USA	trial (RCT)	CABG	selected groups	CABG benefit
Fihn SD, Gardin	USA	Clinical	Evidence	Recommendation	Multidisciplinary
JM, Abrams J, et	(AHA/ACC,	guideline	synthesis, not	s for stable	guidelines
al. (2012	etc.		patients	ischemic heart	integrating
				disease	CABG/PCI/medi
				management	cal therapy
Yancy CW,	USA	Clinical	Evidence	Heart failure	Provided
Jessup M,	(AHA/ACC)	guideline	synthesis	management	evidence-based
Bozkurt B, et al.				strategies	algorithms for
(2013) Yusuf S, Zucker	International	Matarasia	D1. 1 CADC	CARC :1	HF treatmen Landmark
D, Peduzzi P, et	collaboration	Meta-analysis of RCTs	Pooled CABG trial data, 10-	CABG improved long-term	overview
al. (1994	Collaboration	of KC18	year outcomes	survival in multi-	strengthening
ai. (1994			year outcomes	vessel disease	evidence base
Topkara VK,	USA	Observational	Low EF	CABG feasible	Outcomes
Cheema FH,	ODI	cohort	CABG	with acceptable	improved with
Kesavaramanuja		Conort	patients	outcomes	surgical advances
m S, et al. (2005)			F		~ · · · · · · · · · · · · · · · · · · ·
Velazquez EJ,	Multinational	RCT	Ischemic LV	CABG reduced	Landmark
Lee KL, Deja			dysfunction	mortality vs	STICH trial
MA, et al. (2011,			patients	medical therapy	influencing HF
STICH)				(long-term)	revascularization
					guidelines
Passamani E,	USA	RCT	CAD patients	CABG improved	Established
Davis KB,		I KC I	with low EF	survival in low-	evidence for
Gillespie MJ,				EF patients	surgery in LV
Killip T (1985,					dysfunctio
CASS subgroup)					

Discussion

The cumulative body of evidence supports CABG as a cornerstone therapy in patients with ischemic cardiomyopathy, particularly those with multi-vessel CAD and reduced EF. RCTs and meta-analyses consistently demonstrate survival benefits, while observational studies show improving safety over time. Guidelines now recommend CABG as part of comprehensive, patient-tailored management strategies.

However, patient selection remains critical. Factors such as myocardial viability, comorbidities, surgical risk, and patient preference should guide decision-making. The integration of advanced

imaging, hybrid revascularization approaches, and evolving perioperative care continues to refine outcomes for this challenging population.

Conclusion:

CABG has evolved from an experimental surgical option to an evidence-based standard of care for patients with ischemic cardiomyopathy. Landmark trials such as CASS and STICH, supported by meta-analyses and guidelines, confirm its role in improving survival and quality of life. With ongoing advances in surgical techniques and perioperative management, CABG remains a vital therapy in the era of multimodality cardiovascular care.

Conflict of Interest

The authors declare no conflicts of interest in relation to the conduct of this review

Source of funding:

This study did not receive any external funding. It was conducted as part of academic scholarly activity by postgraduate tutors at SGT University, Gurugram, Haryana, India.

Refrences:

- 1. Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics—2016 update: a report from the American Heart Association. *Circulation*. 2016;133(4):e38–e360.
- 2. Coronary Artery Surgery Study (CASS). A randomized trial of coronary artery bypass surgery: survival data. *Circulation*. 1983;68(5):939–950.
- 3. Passamani E, Davis KB, Gillespie MJ, Killip T. A randomized trial of coronary artery bypass surgery: survival of patients with a low ejection fraction. *N Engl J Med*. 1985;312(26):1665–1671.
- 4. Yusuf S, Zucker D, Peduzzi P, et al. Effect of coronary artery bypass graft surgery on survival: overview of 10-year results from randomized trials by the Coronary Artery Bypass Graft Surgery Trialists Collaboration. *Lancet*. 1994;344(8922):563–570.
- 5. Velazquez EJ, Lee KL, Deja MA, et al. Coronary-artery bypass surgery in patients with left ventricular dysfunction. *N Engl J Med*. 2011;364(17):1607–1616.
- 6. Topkara VK, Cheema FH, Kesavaramanujam S, et al. Coronary artery bypass grafting in patients with low ejection fraction. *Circulation*. 2005;112(9 Suppl):I344–I350.
- 7. Fihn SD, Gardin JM, Abrams J, et al. 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease. *Circulation*. 2012;126(25):e354–e471.
- 8. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure. *Circulation*. 2013;128(16):e240–e327.