
Vol.29 No. 03 (2022) JPTCP (2302-2320)  Page | 2302 

Journal of Population Therapeutics 

& Clinical Pharmacology 
 

RESEARCH ARTICLE 

DOI: 10.53555/y1g3r759 
 

IDENTIFICATION OF SMALL LIGAND MOLECULES AS 

POTENT INHIBITORS OF THE MYL9 PROTEIN: AS FUTURE 

CANCER LEADS. 
 

Priyadarshini Gangidi1, Mounika Badineni1, Madhavi Latha Bingi1, Vani Kondaparthi1, 

Hareesh Reddy Badepally1, Kiran Kumar Mustyala3, Vasavi Malkhed1,2* 

 

1Molecular Modelling Research Laboratory, Department of Chemistry, Osmania University, 

Hyderabad, Telangana, India –500007; 
2*Department of Chemistry, University College of Science, Saifabad, Osmania University, 

Hyderabad, Telangana, India –500004; 
3Department of Chemistry, Nizam College, Osmania University, Hyderabad, Telangana, India –

500001 

 

*Corresponding Author: Vasavi Malkhed 
*Department of Chemistry, University College of Science, Saifabad, Osmania University, 

Hyderabad, Telangana, India –500004; 

 

Abstract 

A collection of illnesses collectively known as Cancer arises when cells proliferate uncontrollably and 

spread to other parts of the body. Cancer can impact any tissue or organ. Myosin regulatory light chain 

9 (MYL9) or Myosin light polypeptide 9, is the Myosin regulatory subunit that plays a vital role in 

regulating both smooth muscle and non-muscle cell contractile activity via phosphorylation, 

implicated in cytokinesis, receptor capping, and cell locomotion. The current study considers the 

MYL9 protein a prognostic marker and therapeutic target for various tumours. The current 

investigation aims to identify ligands that may act as inhibitors of the MYL9 protein for the treatment 

of multiple types of Cancer. The MYL9 protein's homology model is produced using Google 

ColabFold's AlphaFold. The protein's three-dimensional structure has been verified. The top ten 

ligands are suggested as effective inhibitors of MYL9 for Cancer treatment based on virtual screening 

experiments. It has been identified that the amino acid residues ILE41, ILE49, LEU54, MET73, 

GLU76, MET89, and LYS93 preferentially dock with ligands, yielding a good Glide Score. The 

proposed ligands are validated through MM-GBSA, SASA, and ADMET properties. The 

pharmacophore groups that strongly inhibit the MYL9 protein are proposed. 

 

1. INTRODUCTION  

The MYL9 protein levels are elevated in various tumors and contribute to tumor invasion in the breast, 

liver, glioblastoma, pancreatic ductal adenocarcinoma, ovarian epithelial tumors, and esophageal 

squamous cell carcinoma[1-5]. The MYL9 protein belongs to the EF-hand calcium-binding protein 

family, specifically the myosin regulatory light chain (RLC) subfamily, with a focus on the functions 

of smooth muscle and non-muscle cells. 

Myosins are a class of motor proteins that use ATP for chemical energy to produce force and motion 

along actin filaments and are involved in several biological functions, such as cell motility, 

intracellular transport, and muscle contraction, in the cells of different tissues[6]. The regulatory 

myosin light chain (MLC), called MLC-2 or MYL9, is responsible for smooth muscle and nonmuscle 
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cell contractile activity[7]. The MYL9 protein is a protein-coding gene that plays a role in various 

cellular functions, including vascular function, cancer progression, and smooth muscle contraction [2, 

8]. It functions as the regulatory light chain of the myosin protein. According to studies, the MYL9 

protein can alter the immunological microenvironment and stimulate the migration, invasion, and 

angiogenesis of cancer cells [9-11]. The current research considers the MYL9 protein as a prognostic 

target in cancer treatment. 

The MYL9 protein converts chemical energy from ATP into mechanical energy, facilitating the 

contraction of smooth muscles within the cell. The enzyme Myosin Light Chain Kinase (MLCK) 

phosphorylates the MYL9 protein, thereby activating it to bind to actin filaments, which governs 

smooth muscle contraction, cell adhesion, and cell migration. Rho-associated Kinase (ROCK) also 

promotes phosphorylation of the MYL9 protein. Calcium binding to calmodulin activates MLCK and 

ROCK, and phosphorylates the MYL9 protein[12, 13]. This promotes cytoskeletal remodeling, 

thereby expanding the ability of cells to proliferate, differentiate, adhere, and migrate (Figure 1). The 

present research considers the MYL9 protein as a potential prognostic target in the treatment of 

various cancers. Inhibiting its function at the calcium-binding site with a potential inhibitor can 

prevent its activation, thereby preventing cancer progression and metastasis.  

 
Figure 1. The biochemical pathway of the MYL9 protein in various cancers. Calcium influx activates 

the MLCK and ROCK systems, which in turn phosphorylate MYL9. The calcium-bound and 

phosphorylated MYL9 becomes active, contributing to actomyosin contraction, cell motility, and 

cancer progression. 

                                                                 

2. METHODOLOGY and SOFTWARE 

Structure-based drug design (SBDD) is a computational technique that makes use of the three-

dimensional structures of biological targets, mainly proteins, to guide the discovery and optimization 

of new therapeutics [14]. By examining the binding sites and structural features of the target, SBDD 

enables the rational design of ligands that can specifically interact with and modulate protein function. 
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Techniques such as molecular docking, molecular dynamics simulations, and virtual screening are 

often employed to predict binding affinities and refine lead compounds. This approach accelerates 

drug discovery, reduces experimental costs, and has been widely applied in the development of 

treatments for cancer, infectious diseases, and metabolic disorders[15, 16]. 

 

2.1. The MYL9 protein 3D model through the ColabFold 

AlphaFold from Google ColabFold is used to create a three-dimensional (3D) model of the MYL9 

protein[17]. UniProtKB/Swiss-Prot is the primary source for comprehensive protein sequence 

annotations. The FASTA sequence of the MYL9 protein, derived from the Universal Protein 

Resource, is submitted to the ColabFold, which generates the protein's three-dimensional 

structure[18].  Five 3D models of the protein are generated from AlphaFold, but the 3D model with 

the highest per-residue local confidence (pLDDT) score, which ranges from 0 to 100, is considered 

the most stable form of the protein. A higher pLDDT score, closer to 100, indicates greater confidence 

in the model. Furthermore, the degree of resemblance between the theoretical and real structures is 

also evaluated using the Template Modelling (pTM) score. The generated 3D model is said to be quite 

similar to the protein's real structure if the pTM score is higher than 0.5, which goes from 0 to 1. 

 

ColabFold 

Google ColabFold's AlphaFold artificial intelligence system applies deep learning to generate highly 

precise predictions of protein 3D structures. AlphaFold represents the first computational approach 

capable of reliably forecasting protein conformations at atomic-level accuracy, even in the absence of 

comparable templates. The performance of AlphaFold has been confirmed through the 14th Critical 

Assessment of Protein Structure Prediction (CASP14) [19]. 

In AlphaFold, pairwise residue representation is fundamental for 3D protein structure prediction, as 

it encodes inter-residue distances and interactions required for proper folding. Large DNA sequencing 

datasets are aligned into multiple sequence alignments (MSAs), where correlated variations among 

amino acids reveal likely residue–residue contacts. AlphaFold leverages these MSAs to detect 

evolutionary constraints that encode structural information. By learning from these patterns, the 

ColabFold predicts accurate 3D protein structures [20]. A contact is typically defined as the presence 

of β-carbon atoms from two residues within a distance of 8 Å. Neural networks estimate contact 

probabilities from MSA-derived features and incorporate these into structural modeling by adjusting 

statistical potentials, thereby steering folding toward conformations that satisfy predicted interactions. 

Additionally, pairwise distances and backbone torsion angles are expected to refine the final structure. 

To improve accuracy, evolutionary distance-based potentials derived from neural network 

predictions, independent of covariation features, are applied to rank models.  

 

2.2. Verification of the MYL9 protein 3D model 

Verifying the 3D structure of a computationally generated protein model is crucial for target-driven 

drug discovery, as researchers must select the most suitable tertiary structure models from a large 

number of predicted models before employing them in biomedical studies. It helps comprehend the 

protein's relationships, function, and involvement in drug design. Verifying the protein model's 

correctness helps avoid mistakes by ensuring it matches the actual structure [21]. Protein Structure 

Analysis (ProSA), Predicted Aligned Error (PAE) heatmap, and Ramachandran Plot (RP) are used to 

assess the generated 3D protein model. ProSA is an interactive web service that researchers use to 

check errors in protein 3D structures through quality scores and energy plots [22]. ProSA identifies 

the problematic areas in the 3D model generated, ensuring the researchers have reliable models. A 

significant outcome is the Z-score, which shows the model's overall quality and is presented alongside 

all of the PDB's known protein structures [23]. A negative Z-score is regarded as favorable, as it 

suggests fewer errors in the protein model. In structural analysis, the ProSA local quality graph 

illustrates knowledge-based energy profiles relative to amino acid sequence positions, enabling the 

identification of problematic or misfolded regions within a protein [24].  
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The PROCHECK package evaluates torsion angles (φ and ψ) through the Ramachandran Plot (RP). 

The plot is a two-dimensional representation where the φ angle is plotted along the x-axis and the ψ 

angle along the y-axis [25]. The φ and ψ values for each amino acid residue in a structure are indicated 

as points, showing whether the torsion angles are stereochemically feasible [26]. Additionally, the 

Predicted Aligned Error (PAE) heatmap generated by the ColabFold displays the predicted residue-

level error relative to reference structures [27]. 

 

2.3. Identification of Binding Sites in the MYL9 protein 

A binding site or active site in a protein is defined as the specific amino acid residues where small 

molecules (ligands) form strong interactions, such as hydrogen bonds. The identification is crucial in 

drug design because it helps hinder protein activity by blocking active amino acid residues or inducing 

conformational changes around the active site. The characteristics of the site define the features and 

binding potential of the ligands identified. 

The CASTp (Computed Atlas of Surface Topography of Proteins) server [28] and the SiteMap suite 

of Schrödinger tools estimates a protein's binding site. CASTp is a web-based tool designed to locate, 

define, and quantify concave surface areas on three-dimensional protein structures, such as voids and 

pockets [29]. It analyzes geometric and topological aspects using the alpha shape approach from 

computational geometry, which estimates the location and volume of regions using models such as 

the solvent-accessible surface (Richards’ surface) and the molecular surface (Connolly’s surface) [30]. 

For pre-computed results, a standard probe size of 1.4 Å is applied to calculate solvent-accessible 

surface area, approximating the dimensions of water molecules [31]. Within structure-based drug 

design, Schrödinger’s SiteMap program is commonly employed to locate, characterise, and evaluate 

the druggability of possible binding sites on protein surfaces [32, 33]. The tool embeds the protein in 

a 3D Cartesian grid labelled for the atom’s Van der Waals radius. 

 

2.4. Virtual Screening of the MYL9 protein 

Virtual screening is a computational approach used in drug discovery to identify ligands or small 

molecules with the potential to interact with the target protein and act as effective inhibitors [34]. The 

process prepares the ligands and target protein for docking and scoring analysis[35]. Ligands are 

filtered based on binding scores. Biochemical assays and crystallography experimentally validate the 

identified ligands. 

 

 Ligand Preparation 

In the ligand preparation process for the MYL9 protein molecular docking, the ligand’s configuration 

is adjusted to be suitable for precise docking simulations [36]. This process includes generating four 

conformers for ligands at pH 7.0 ± 2.0, adding missing hydrogens, assigning partial charges, and 

defining rotatable bonds to ensure proper ligand interaction at the receptor’s active site, where the 

lowest-energy conformer is selected for further study [37, 38]. The preparation of ligand structures 

for virtual screening was performed using the LigPrep module of the Schrödinger package, employing 

the OPLS force field [39]. 

 

The MYL9 protein Preparation 

The Protein Preparation module in the Schrödinger Suite optimises protein structures for energy 

minimisation, ensuring high-quality structures for docking and simulations in drug design by 

adjusting atomic coordinates and reducing potential energy[40]. During this process, missing 

hydrogens are added, side chains are corrected, and hydrogen bond networks are optimised to ensure 

optimal functionality. The Schrödinger Suite utilises the OPLS force field for energy minimisation. It 

determines a protein's potential energy, which is essential for replicating experimental findings [41, 

42]. 
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Receptor Grid Generation in the MYL9 protein binding site 

In molecular docking, receptor grid development entails mapping a target protein's interaction 

potential with ligands by constructing a three-dimensional grid around the protein's binding site. The 

grid specifies spatial coordinates to evaluate ligand atoms for energy interactions, such as van der 

Waals and electrostatic forces [43]. Through the pre-computation of receptor characteristics, this 

procedure reduces computational complexity and facilitates the adequate sampling of ligand poses 

during docking. The glide module of the Schrödinger suite is used for grid generation and effective 

ligand-receptor docking, and it is helpful in virtual screening, binding pose modification, and pose 

optimization [44]. Glide utilizes the OPLS-AA force field and hierarchical filters to provide accurate 

energy estimates. The Schrödinger suite generates the Grid using the Grid Gen module, with 

dimensions of 80 Å × 80 Å × 80 Å for the 3D structure generated. This grid encloses the cavity of the 

active site, guaranteeing every ligand's potential for binding[45]. 

       

Molecular Docking of the MYL9 protein  

Molecular docking is a computational method applied in target-based drug discovery or SBDD to 

examine atomic-level interactions between ligands and the receptor protein (MYL9) [46]. It serves as 

a practical strategy in drug design and development, assisting in the identification and optimization 

of potential therapeutic compounds. The receptor–ligand docking was performed using the GLIDE 

(Grid-based Ligand Docking) software, where the protein Grid defined the active binding pocket.  

Three phases of filtration and inquiry are used to analyse the ligand structures; each stage yields an 

output of 10%. The High Throughput Virtual Screening (HTVS) protocol was then applied, which 

systematically screens the ligand library to eliminate unstable molecules and retain low-energy, 

flexible ligand conformations. Monte Carlo simulations [47] examine the structural and orientational 

isomers at the Standard Precision (SP) stage, when ligands with a high binding affinity for the receptor 

group bind together. SP outperforms random selection in 97% of situations, reproducing crystal 

complex geometries with <2.5 Å RMSD in 85% of Astex cases and achieving an average AUC of 

0.80 across 39 DUD targets. At the Extra Precision (XP) step, ligand structures are screened according 

to energy and scoring function criteria. The XP (Extra Precision) method was developed to improve 

screening accuracy and better reproduce experimental binding data. It achieves docking pose 

accuracies with RMSDs around 2 Å for well-docked ligands and root-mean-square errors of ~2 

kcal/mol in predicted binding affinities [48]. Conformers showing the best fit, optimal energy values, 

and highest Glide scores, as obtained from the extra precision mode, are prioritised for further 

investigation. The Glide Score is a scoring function designed to estimate the strength and stability of 

ligand-receptor interactions during molecular docking studies. It evaluates how well a ligand fits into 

the binding pocket of a target protein by considering both favourable interactions, such as shape 

complementarity, electrostatic attraction, hydrophobic contacts, and hydrogen bonding, as well as 

unfavourable factors, including excessive flexibility or poorly oriented polar groups. The Glide score 

reflects the strength of interaction between the ligand and receptor. The screened ligands are processed 

for validation [49].  

 

2.5. Validation of Ligands 

In experimental or computational investigations, ligand validation ensures that a ligand, a molecule 

that binds to a specific site on a macromolecule (such as a protein or receptor), is accurately 

represented in terms of its structure, binding capabilities, and functional significance. This guarantees 

the ligand's reliability for applications such as drug development, structural biology, or biochemical 

research [50]. 

 

MM-GBSA 

The binding strengths between protein and ligand estimate the strength of the docking. The binding 

free energy of protein-ligand complexes or other biomolecular interactions is estimated 

computationally in molecular dynamics (MD) simulations using the MM-GBSA (Molecular 

Mechanics-Generalised Born Surface Area) method [51, 52]. In the present approach, molecular 
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mechanics (MM) energy terms are combined with solvent-accessible surface area (SA) calculations 

and continuum solvent models, such as the Generalised Born (GB) approximation, to evaluate the 

binding free energy [53-55]. 

ΔG_bind = G_complex - (G_receptor + G_ligand) 

Free energy, G = E_MM + G_solv - TS 

E_MM: Molecular Mechanics energy (internal, van der Waals, electrostatic) 

G_solv: Solvation free energy 

TS: Entropy contribution 

SASA of the docked complexes 

The Solvent-Accessible Surface Area (SASA) of docked complexes represents the portion of a protein 

or protein–ligand complex exposed to solvent molecules, typically water [56]. SASA provides insights 

into hydrophobic compactness, conformational stability, and folding of proteins, along with their 

interactions with ligands or other biomolecules [57]. In the context of docked complexes, SASA is 

widely used to evaluate conformational changes, binding interface stability, and the effect of 

mutations on protein-ligand and protein-protein interactions [58]. Schrödinger software, through its 

Maestro interface, offers SASA analysis. The Shrake-Rupley algorithm approximates SASA by 

placing a probe sphere, typically 1.4 Å in radius, similar to a water molecule, around the molecule[59]. 

It calculates the Surface Area accessible to the probe without overlapping with other atoms. 

 

ADMET studies of the docked ligands 

In drug development, ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicology) 

studies of ligands are crucial for evaluating how the compounds behave in living organisms and how 

that affects their potential as therapeutic agents [60]. The Schrödinger QikProp module calculates the 

ADME properties of the ligands docked with the MYL9 protein[61]. QikProp evaluates over 20 

physicochemical descriptors, including HERG potassium channel inhibition (log IC50), Caco-2 and 

MDCK evaluations of membrane permeability, blood–brain barrier penetration (log BB), water 

solubility (log S), octanol–water partition coefficient (log P), and human serum albumin binding (log 

Khsa) [62, 63].  The forecasts reduce the clinical trial failures, facilitating the early identification of 

drugs with favourable pharmacokinetic profiles. A drug's detrimental effects on the body as a result 

of excessive exposure, improper dosage, or unfavourable reactions are referred to as drug toxicity. 

The toxicity of the drug depends on the ability to metabolise and excrete the drug [64, 65]. 

 

3. RESULTS AND DISCUSSION 

3.1. AlphaFold 3D model of the MYL9 protein generation 

The 3D structure of the MYL9 protein is generated (Figure 2) by employing ColabFold. The 172-

amino-acid FAASTA sequence, which has the UniProt ID P24844, is obtained from UniProtKB and 

uploaded to ColabFold. For additional analysis, the 3D model with pLDDT = 83.10 and pTM = 0.512 

is used. A pLDDT score of 83.10 on a scale of 0-100 and a pTM score of 0.512 indicate that the 

generated model is reliable. 

 
Figure 2. ColabFold-generated 3D structure of the MYL9 protein, yielding a pLDDT score of 83.10 

and a pTM score of 0.512. It is visualised in Discovery Studio. 
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3.2. Evaluation of the ColabFold-generated 3D model of the MYL9 protein 

The ProSA server was employed to validate the constructed 3D model of the MYL9 protein, which 

produced a Z-score of –6.03 (Figure 3). This result suggests that the predicted model of MYL9 has 

fewer structural errors compared to many experimentally resolved structures available in the PDB. 

The local model quality profile (Figure 4) further shows that all amino acid residues fall within the 

negative energy region (below zero), indicating that the MYL9 structure is energetically stable and 

structurally reliable, thereby enhancing the overall quality of the model. 

 
Figure 3.  ProSA validation of the MYL9 protein model. The predicted 3D structure of MYL9 shows 

a Z-score of –6.03, which is consistent with experimental protein structures in the PDB, indicating 

fewer structural errors. In the ProSA plot, the light blue region corresponds to X-ray data and the dark 

blue region to NMR data of experimentally resolved proteins in the PDB. The location of the MYL9 

protein is highlighted by a black dot inside a red circle. 

 

 
Figure 4. The amino acid residues in the negative, less energetic area are displayed on the ProSA-

assessed local model quality graph for the MYL9 protein. The negative energy indicates that the 

amino acid configuration is acceptable. 

 

The 3D model of MYL9 has been validated using the Ramachandran Plot (RP Plot), as shown in 

Figure 5, generated by the PROCHECK server. The RP Plot illustrates the overall stereochemical 

feasibility of the constructed MYL9 protein model. It features four distinct regions: the energetically 

most favoured zone, the extra permitted region, the liberally allowed region, and the forbidden region 

(Figure 5A). According to the plot data, 87.0% of the residues (134 amino acids) in the MYL9 protein 

fall within the most preferred region, while 13% (20 amino acids) reside in the extra allowed areas. 
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Notably, no residues are located in the liberally permitted or disallowed regions. Considering that 

87.0% of the amino acid residues are positioned in the most preferred region, it can be concluded that 

the model demonstrates good stereochemical feasibility (Figure 5B). 

 

 

A                                                                              B 

Figure 5. The MYL9 protein Ramachandran plot. (A)Four areas make up the account. The red region 

shows the most preferred area, the additionally permitted area by the brown region, the liberally 

permitted area by the yellow region, and the prohibited area by the light yellow field. (B)The proposed 

model appears stereochemically acceptable since 134 amino acids (87.0%) of the 172 amino acids in 

the MYL9 protein are located in the most preferred area. 

 

The PAE heat map generated from the ColabFold (Figure 6) shows clear patterns of structural 

confidence across the protein. The dark green region indicates low error and high confidence, and the 

calcium-binding region 30-165 falls under this region. 

 

 
Figure 6. PAE plot of the MYL9 protein. The dark green region indicates the low PAE value with 

high confidence, while the pale green region indicates low confidence with a high PAE value. 

 

3.3. The secondary structural characteristics of the MYL9 protein 

Tables 1 and 2 present the composition of the MYL9 secondary structure, which includes α-helices 

and β-sheets. The protein contains 9 α-helices, 2 β-sheets, 7 β-strands, and 2 β-hairpins. Pi-cation 

interactions, along with intramolecular hydrogen bonds, play a key role in maintaining the structural 

integrity of MYL9. The secondary structure information of MYL9, obtained from the PDB-Sum 

server, is illustrated in Figure 7.             
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Table 1.α-helices of the MYL9 protein. 
S.no Starting amino 

acid Residues 

Ending amino acid 

Residues 

No. of 

residues 

Length in Ao Sequence 

1 VAL22 MET25 4 7.40 VFAM 

2 GLN28 ILE41 14 21.37 QSQIQEFKEAFNMI 

3 LYS51 SER60 10 15.68 KEDLHDMLAS 

4 ASP67 SER75 9 14.05 DEYLEGMMS 

5 PHE83 LEU94 12 17.91 FTMFLTMFGEKL 

6 GLU100 ALA108 9 13.73 EDVIRNAFA 

7 GLU120 THR129 10 15.02 EDHLRELLTT 

8 ASP136 TYR143 8 12.56 DEEVDEMY 

9 TYR156 HIS165 10 14.23 YVEFTRILKH 

 

Table 2.β-Strands of β-Sheets of the MYL9 protein. 
S.no Starting amino 

acid Residue 

Ending amino acid 

Residue 

Beta Sheet No.of residues Sequence 

1. PHE48 ILE49 A 2 FI 

2. ILE81 ASN82 A 2 IN 

3. PHE117 HIS119 B 3 FIH 

4. ASN153 ASN155 B 3 NFN 

 

 
Figure 7. The schematic diagram of the secondary structure of the MYL9 protein from the PDB-

Sum server. 

 

3.4. Binding site prediction of the MYL9 protein  

The binding pocket of the MYL9 protein was predicted using the SiteMap tool in the Schrödinger 

suite, in conjunction with the CASTp server. The calculated pocket volumes were 167.041 Å³ and 

687.78 Å³ for Site 1 (CASTp) and Site 2 (SiteMap), respectively. These regions, which contain amino 

acid residues essential for ligand interaction, are summarized in Table 3. Conserved residues spanning 

positions 30 to 165, as identified through the BLASTp algorithm (Figure 10), overlapped with 

residues mapped to the predicted binding pockets by SiteMap (Figure 8) and CASTp (Figure 9). Based 

on these predicted binding regions, Schrödinger’s Grid Generation tool was employed to prepare the 

MYL9 receptor for Glide docking.  
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Figure 8. Putative binding pockets 1 and 2, respectively, in red and green, were generated from 

the SiteMap tool and viewed from PyMOL. 

 

Figure 9. The putative binding pockets 1 and 2, respectively, are shown in red and green, as viewed 

from the CASTp server. 

 

 

Figure 10. The MYL9 protein conserved domains obtained via BLASTp. The calcium-binding site 

and active amino acid residues 30–165 are binding sites for new lead compounds. 
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Table 3. Volume and Amino acid residues present in the binding sites of the MYL9 protein from 

the CASTp tool and the Site Map tool. 
S.No Server Cavity Volume 

in Å3 

Residues 

1. CASTp 1 687.78 93LYS, 96GLY, 97THR, 89ASP, 102VAL, 106ALA, 107PHE, 110PHE, 

118ILE, 123LEU, 126LEU, 127LEU, 130MET, 131GLY, 132ASP, 

133ARG, 134PHE, 138GLU, 142MET, 154PHE, 159PHE, 163LEU 

  2 105.6 144ARG, 145GLU, 146ALA, 147PRO, 158GLU, 161ARG, 162ILE, 

165HIS, 166GLY, 176ALA, 168LYS, 170LYS 

2. Site Map 2 167.041 ILE41, ILE49, LEU54, MET73, GLU76, ALA77, PRO78, ILE81, 

PHE86, MET89, PHE90, GLU92, LYS93 

  1 120.393 PHE107, PHE110, ILE118, LEU123, LEU126, LEU127, MET130, 

GLY131, ASP132 

 

3.5 Virtual Screening Analysis of the MYL9 protein 

Schrödinger's LigPrep module prepares the ligand dataset for docking with the MYL9 protein in the 

Virtual Screening process. Then, the protein is optimized using the Protein Preparation Wizard. A grid 

is generated to encompass the binding site of the MYL9 protein, ensuring accurate docking. The 

ligand dataset is submitted to the Virtual Screening window, which performs High-Throughput Virtual 

Screening, filtering out low-energy, flexible ligands for Standard Precision Screening. Standard 

Precision Docking then selected stable structural orientations of isomers. Next, the chosen structures 

undergo Extra Precision (XP) screening, where ligands are further filtered based on energy and 

scoring criteria. The conformers with the most negative glide scores and energies are the ones that 

dock most closely to the MYL9 protein. Fifty-nine ligands are selected after XP screening, with the 

ten best-fit ligands presented in Table 4, where the interacting pharmacophore of ligands is highlighted 

in a red box. Preferably, the MYL9 protein docked with the amino acids ILE41, ILE49, LEU54, 

MET73, GLU76, MET89, and LYS93 to the ligands. The important pharmacophore groups with 

which the ligands docked with the MYL9 protein are Trifluoromethylphenyl, Indole, Piperazine, 

Chlorophenyl, Pyridine, quinolone, fluoro-benzyl, methoxy-benzyl, tetrazole, benzotriazole, 

quinolin-2-one, and dimethylamino-phenyl. The 3D and 2D images of the target-ligand complexes 

are shown in Figure 11.  These amino acids fall in the EF-hand motif, which functions as a calcium-

binding and signal transduction. 

  

Table 4. The selected ligands from L1 to L10 and their interactions with the target protein, MYL9 
Ligand 

.no           

Structure of the 

molecule                       

Glide Energy 

(Kcal/Mol) 

XP Glide 

Score 

Intermolecular Interaction Distance 

(Å) 

L1 

 
 

-49.74 

 

-8.96 

 

L1: H25 - A: GLU76:OE2 

 L1: H11 - A: MET73: O 

 L1 - A: LYS93 

 L1:C2 - A: ILE41 

 L1 - A: LEU54 

 L1:C22 - A:PRO78 

 L1:H20 - A: GLU92:OE2 

 

1.77 

2.44 

4.03 

4.69 

5.29 

3.97 

2.23 

L2  

 
 

-47.31 

 

-8.88 

 

L2: H28 - A: GLU76: OE2 

 L2: H29 - A: MET89: O 

 L2: CL1 - A: LYS93 

 L2 - A: MET73 

A: PHE90 -: L2:CL1 

2.15 

1.73 

4.47 

5.09 

4.19 

L3 

 
 

-33.30 

 

-8.70 

 

L3: N3 - A: GLU76: OE2 

L3:  N4 - A: GLU92: OE2 

L3: H2 - A: MET89: O 

L3: C16 - A: ILE49 

L3: C16 - A: ILE41 

L3: C16 - A: LEU54 

3.84 

4.37 

2.33 

4.35 

4.36 

4.56 
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L4 

 

-52.78 

 

-8.42 

 

L4: H1 - A: GLU76: OE2 

A: LYS93:HZ1 -: L4:O2 

A: LYS93:HE2 -: L4: O1 

L4: H11 - A: MET73: O 

L4 - A: MET89 

L4:H11 - A: MET73: O 

L4 - A: LEU54 

L4 - A: ILE81 

 

1.79 

1.80 

2.57 

2.24 

5.22 

2.24 

5.49 

5.20 

L5 

 
 

-47.32 

 

-8.37 

 

L5: H30 - A: GLU76: OE2 

A: LYS93: HZ1 -: L5:N4 

 L5: H8 - A: MET73: O 

A: MET89 -: L5 

L5:CL1 – A: ILE41 

L5:C18 – A :LEU54 

1.74 

2.16 

2.57 

5.39 

5.49 

4.86 

L6 

 
 

-47.94 

 

-8.27 

 

 L6: H26 - A: GLU76:OE2 

A: LYS93: HZ1 -: L6: N4 

L6: H7 - A: MET73: O 

A: MET89 -: L6 

L6 - A: LEU54 

 

1.65 

2.42 

2.49 

5.11 

5.34 

L7   

 
 

-50.76 

 

-8.20 

 

L7: H6 - A: GLU76: OE2 

A: LYS93: HE2 -: L7: O3 

L7: H14 - A: MET89: O 

L7 - A: MET73 

 L7 - A: ILE41 

L7 - A: ILE49 

L7 - A: LEU54 

 

1.69 

2.50 

2.86 

5.05 

5.44 

5.30 

5.16 

L8   

 
 

-43.04 

 

-8.14 

 

L8: H35 - A: GLU76: OE2 

 L8: C17 - A: LYS93 

L8: C19 - A: MET89 

A: PHE90 -: L8 

 L8:C19 – A: ILE81 

 L8:C17 – A: LEU94 

 L8:C21 – A: ILE41 

 L8:C21 – A: ILE49 

L8:C21 - A: LEU54 

 

1.67 

4.04 

4.88 

3.86 

4.64 

4.17 

4.53 

4.23 

5.20 

L9 

 
 

-49.49 

 

-8.06 

 

L9: H37 - A: GLU76: OE2 

A: PHE90 -: L9 

L9 - A: MET73 

L9 - A: MET89 

L9 - A: LYS93 

L9:C18 – A: LYS93 

L9:C18 – A: LEU94 

A: ILE49 -: L9 

A: LEU54 -: 2L9 

 

 

1.69 

3.93 

5.38 

4.72 

5.49 

3.97 

3.89 

4.99 

5.34 

L10   

 
 

-49.20 

 

-8.00 

 

L10:N4 - A: GLU76: OE2A:  

A: LYS93: HZ1 -: L10: O1 

 L10:H2 - A: MET73: O: L10 

 L10 : H8 - A:MET89:O 

L10 - A: ILE49 

 L10 - A: LEU54 

 L10 - A: ILE81 

 

3.92 

2.38 

1.76 

2.61 

5.35 

5.07 

4.69 

https://jptcp.com/index.php/jptcp/issue/view/79


Identification Of Small Ligand Molecules as Potent Inhibitors of the MYL9 Protein: As Future Cancer Leads. 

 

Vol.29 No. 03 (2022) JPTCP (2302-2320)  Page | 2314 

 

     

     

Figure 11. 3D structures of the MYL9 protein docked with ligands L1a to L10a. The docked ligands 

are depicted in a stick model near the protein, which is represented as a flat ribbon. The amino acids 

interacting with the ligands are displayed. 2D structures of the ligands and their interactions with the 

protein are shown in L1b to L10b. The interacting amino acid residues are represented as balls. N-π, 

π-alkyl, and H-bond interactions are indicated in orange, pink, and green, respectively. The 3D and 

2D structures of the docked complexes are visualized using Discovery Studio.  

 

3.6. MM-GBSA calculations of the Ligands: 

The binding free energies of protein-ligand complexes were calculated from the Prime MM-GBSA 

module of the Schrödinger docking suite. Table 5 provides the computed outcomes obtained through 

the MM-GBSA tool available in the Schrödinger suite. The approach evaluates different components 

of binding energy, such as hydrogen bonding, covalent bonding, Van der Waals forces, and solvation 

contributions. Negative energy values indicate the thermodynamic stability of the docked ligands with 

the MYL9 protein. The priority given is based on the Glide Score. 
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Table 5. MM-GBSA analysis of the MYL9-ligand complexes. 

 
Ligand 

No 

XP 

Glide 

score 

MM-

GBSA 

dG bind 

(k.cal/mol) 

MM-GBSA 

dG Bind 

Coulomb 

(K.cal/mol) 

MM-GBSA 

dG Bind 

Covalent 

(k. cal/mol) 

MM-GBSA 

dG Bind vdW 

(k.cal/mol) 

 

MM-GBSA 

dG Bind 

Solv GB 

(k. cal/mol) 

MM-GBSA 

dG Bind H-

bond 

L1 -8.96 

 

-45.43 

 

-151.36 

 

8.69 

 

-39.46 

 

159.96 

 

-1.28 

 

L2 -8.88 

 

-46.05 

 

-211.09 

 

3.86 

 

-37.28 

 

217.56 

 

-1.06 

 

L3 -8.70 

 

-44.24 

 

-192.24 

 

0.68 

 

-28.78 

 

194.20 

 

-0.02 

 

L4 -8.42 

 

-43.42 

 

-157.86 

 

5.49 

 

-33.63 

 

166.06 

 

-2.01 

 

L5 -8.37 

 

-51.59 

 

-155.58 

 

8.20 

 

-42.88 163.99 

 

-2.01 

 

L6 -8.27 

 

-33.74 

 

-159.08 

 

10.53 

 

-22.28 

 

163.68 

 

-0.69 

 

L7 -8.20 

 

-31.40 

 

-150.81 

 

16.10 

 

-42.32 

 

162.39 

 

-0.84 

 

L8 -8.14 

 

-36.09 

 

-141.69 

 

10.47 

 

-27.36 

 

146.71 

 

-0.76 

 

L9 -8.06 

 

-37.39 

 

-150.17 

 

10.05 

 

-32.45 

 

158.72 

 

-0.39 

 

L10 -8.00 

 

-39.50 

 

-143.73 

 

5.86 

 

-33.97 

 

153.45 

 

-1.06 

 

 

Among the ten ligands (L1–L10), docking and MMGBSA analysis identified L5 and L10 as the most 

promising candidates. L5 showed a highly favorable binding free energy (–51.59 kcal/mol) with 

strong van der Waals and hydrogen bonding contributions, while L10 demonstrated the most 

favorable overall binding energy (–53.58 kcal/mol), driven by strong electrostatic interactions but has 

high solvation energy. L1 achieved the best docking score (–8.96 kcal/mol) with stable van der Waals 

interactions, and L2 also exhibited strong electrostatic interactions but faced solvation penalties. 

Overall, L5 emerged as the most well-rounded ligand, combining strong binding affinity, van der 

Waals stabilization, and hydrogen bonding, making it a key candidate for further research. 

 

3.7. SASA studies of the MYL9 protein. 

An important factor that governs protein folding and structural stability is its solvent exposure, 

described as the Solvent Accessible Surface Area (SASA). SASA values are predicted from protein 

sequences through advanced machine learning methods developed using solved structural datasets 

and computational algorithms. The solvent-accessible area is often employed to estimate variations 

in free energy when a biomolecule shifts from a polar (aqueous) medium to a non-polar environment, 

such as a lipid phase. Table 6 provides SASA estimations for ten receptor–ligand complexes. The 

obtained values, ranging between 300 and 700, suggest that significant energy redistribution occurs 

during the MYL9 protein’s transition, emphasising its solvent accessibility and highlighting the 

adaptability of the MYL9 protein–ligand system in both polar and nonpolar surroundings. 

 

Table 6. SASA estimations for ten receptor-ligand complexes. 

 
LIGAND  

No 

 SASA (Å2)     FISA (Å2)    FOSA (Å2)     PISA (Å2)      PSA (Å2) 

       L1 822.11 

 

135.12 

 

248.66 

 

256.49 

 

93.07 

 

       L2 749.90 

 

60.03 

 

249.93 

 

368.33 

 

53.59 

 

       L3 578.61 

 

70.22 

 

350.41 

 

157.97 

 

42.90 
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      L4 852.06 

 

83.07 

 

241.11 

 

480.86 

 

104.81 

 

      L5 693.01 

 

76.72 

 

320.31 

 

210.05 

 

55.62 

 

     L6 654.18 

 

81.61 

 

290.98 

 

251.95 

 

55.08 

 

      L7 827.75 

 

112.48 

 

88.53 

 

626.73 

 

109.50 

 

     L8 727.34 

 

117.56 

 

510.57 

 

99.20 

 

88.13 

 

     L9 828.53 

 

109.17 

 

443.82 

 

275.53 

 

88.97 

 

     L10 799.6 

 

78.49 

 

246.60 

 

474.49 

 

71.58 

 

    

Surface area analysis revealed diverse physicochemical profiles among the ligands. L4, L7, and L9 

exhibited the highest solvent-accessible surface areas (SASA), indicating greater solvent exposure, 

while L3 showed the lowest SASA. Hydrophilic contributions (FISA) were most pronounced in L1, 

L7, and L8, whereas hydrophobic surface areas (FOSA) were highest for L8 and L9, suggesting strong 

lipophilic interactions. L7 and L4 displayed the largest π-interaction surface areas (PISA), favoring 

aromatic stacking, while polar surface area (PSA) was highest for L7 and L4, correlating with better 

hydrogen bonding and solubility. Collectively, these results suggest that L7 and L4 balance polar 

interactions and π-stacking, whereas hydrophobic contacts dominate in L8 and L9, and L3 exhibits 

the lowest polar surface, thereby favoring membrane permeability.     

  

3.8. ADMET properties 

The ADMET properties of the MYL9 protein are summarised in Table 7. These characteristics were 

calculated using the ADMET tool from the Schrödinger Suite. The human oral absorption values for 

the selected ligands range from 68% to 100%, indicating that these ligands are likely to be well-

absorbed and could serve as potential lead molecules. The blood-brain barrier partition coefficients 

range from -0.10 to 0.94, while the central nervous system (CNS) values fall between -1 and -2. The 

number of donor hydrogen bonds is between 0 and 2, and the acceptor hydrogen bonds range from 

2.5 to 9.75. Additionally, the molecular weights of the ligands vary from 280.37 to 497.64, all within 

acceptable limits. These properties suggest that the selected ligands are potent inhibitors of the MYL9 

protein, as their ADME characteristics fall within a favorable pharmacokinetic range. 

 

Table 7. ADME properties of the MYL9 inhibitors. 

 
Ligand 

No 

XP 

Glide 

score 

CNS Mol 

MW 

Donor 

HB 

Accepted 

HB 

Q Plog 

Po/w 

Q Plog 

BB 

QPlog 

HERG 

% Human 

oral 

absorption 

Rule of 

Three 

Rule 

of 

Five 

L1 -8.96 

 

1 492.47 

 

0 8 

 

4.41 

 

-0.53 

 

-7.45 

 

90.56 

 

1 0 

L2 -8.88 

 

1 462.98 

 

0 7 4.84 

 

0.10 

 

-7.07 

 

100 

 

0 0 

L3 -8.70 

 

1 280.37 

 

0 5 2.52 

 

0.16 

 

-5.70 

 

90.54 

 

0 0 

L4 -8.42 

 

-1 478.52 

 

2 9.75 3.70 

 

-0.94 

 

-4.94 

 

100 

 

1 0 

L5 -8.37 

 

1 443.00 

 

0 6 4.38 

 

0.25 

 

-5.97 

 

100 

 

0 0 

L6 -8.27 

 

1 426.55 

 

0 6 3.79 

 

0.10 

 

-5.81 

 

96.05 

 

0 0 

L7 -8.20 

 

-2 494.5 

 

1 9.5 3.63 

 

-1.27 

 

-5.33 

 

100 

 

0 0 

L8 -8.14 

 

1 423.56 

 

1 9.5 2.01 

 

-0.12 

 

-6.49 

 

68.69 

 

0 0 

L9 -8.06 

 

1 497.64 

 

1 8.5 4.46 

 

-0.40 

 

-7.1 

 

95.29 

 

0 0 
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L10 -8.00 

 

-1 480.60 

 

2 7 4.48 

 

-0.74 

 

-4.31 

 

100 

 

1 0 

 

ADMET profiling indicated that most ligands met Lipinski’s drug-likeness criteria, with molecular 

weights below 500 Da and acceptable hydrogen bond donor/acceptor counts. Ligands L1, L2, L5, and 

L9 showed favorable LogP values and high predicted oral absorption (>90%), with moderate CNS 

penetration. L4 and L7 had weaker blood–brain barrier permeability but maintained excellent oral 

absorption. HERG inhibition data suggested a potential cardiotoxicity risk for L1, L2, L9, and L10, 

while L4 and L7 appeared safer. Overall, L5 and L2 emerged as balanced candidates, combining 

strong docking affinity, favorable pharmacokinetics, and good oral absorption. Conversely, L10 

demonstrated excellent binding but violated drug-likeness rules, limiting its potential for further 

optimization. 

 

4. CONCLUSION 

The current research suggests that the MYL9 protein is a promising target for treating various types 

of Cancer. Using ColabFold software, the three-dimensional structure of MYL9 was generated with 

AlphaFold and validated. Virtual screening revealed that all ligands preferentially bind to ILE41, 

ILE49, LEU54, MET73, GLU76, MET89, and LYS93 at the selected binding site. Ten small-molecule 

ligands were identified based on Glide scores and Glide energy. The ligands from L1 to L10 were 

further validated through MM-GBSA, ADMET, and SASA analyses. These results highlight L5 as the 

most promising lead, with L2 and L1 as strong secondary candidates for further optimisation and 

development. Key pharmacophore groups, such as Trifluoromethylphenyl, Indole, Piperazine, 

Chlorophenyl, Pyridine, quinolone, fluoro-benzyl, methoxy-benzyl, tetrazole, benzotriazole, 

quinolin-2-one, and dimethylamino-phenyl, are proposed to inhibit MYL9, potentially aiding in the 

prevention of various Cancer types and supporting the development of new targeted therapies. 
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