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Abstract 

Ambient air pollution has become a grave urban health crisis in India, with major cities 
experiencing recurrent spikes in fine particulate concentrations that correlate with increased 
respiratory illness. Across five metropolitan centers—Delhi, Mumbai, Kolkata, Bengaluru, and 
Chennai—this study explored the ecological association between monthly average pollutant levels 
(PM₂.₅, PM₁₀, NO₂, SO₂, O₃) and surveillance-based respiratory morbidity (ARI, ILI, SARI, asthma, COPD). 
We employed an ecological, cross-sectional time-trend design using publicly available data from 
CPCB and IDSP, along with meteorological covariates from IMD, spanning 2019–2024. 
Descriptive statistics revealed stark inter-city differences: Delhi exhibited the highest pollutant load 
and morbidity burden, especially in winter and post-Diwali months, while coastal cities such as 
Chennai showed lower but seasonally elevated levels. Correlation analysis consistently showed 
strong positive relationships between PM₂.₅ and morbidity counts (r ≈ 0.58–0.75, p < 0.01), with 
slightly lower but significant associations for PM₁₀. Multivariate regression models, adjusted for 
weather and population size, identified PM₂.₅ as the dominant predictor (β ≈ 0.03 cases / µg/m³; p < 
0.001), explaining up to 72% of the variance in respiratory case trends in Delhi and about 60% 
across other cities. Lag analysis indicated delayed morbidity spikes 2–3 weeks following sustained 
pollution episodes. These results align with ecological assessments from cities like Delhi, Lucknow, 
and Maharashtra, and reflect the short-term health improvements observed during COVID-19 
lockdown phases. The study underscores the value of ecological surveillance as a tool for public 
health planning, and highlights the urgent need for integrated pollutant-health monitoring, early 
warning systems, and AI/ML-assisted forecasting for city-level morbidity in urban India. 

Keywords: Air pollution, Respiratory morbidity, PM₂.₅, Ecological analysis, Surveillance data, 
Indian cities 
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1. Introduction 

Urban air pollution has emerged as a serious and pressing public health crisis in India, particularly 

over the last two decades. With economic growth and urban expansion accelerating, cities like 

Delhi, Mumbai, Kolkata, Chennai, and Bengaluru have seen unprecedented vehicular movement, 

construction activities, industrial discharge, and population congestion—all of which contribute 

significantly to ambient air pollution. In fact, many Indian cities consistently rank among the most 

polluted globally, with PM2.5 and PM10 levels regularly breaching national and international safety 

thresholds. The consequences of this are not just environmental—they translate into direct and 

measurable impacts on human health, especially on respiratory health. Children, the elderly, and 

those with pre-existing conditions often bear the brunt of this exposure. According to a study 

focusing on the district-level epidemiology of acute respiratory infections in under-five children in 

India, environmental and household risk factors interact in complex ways, producing spatial 

disparities in respiratory disease burden across states and cities¹. 

The link between ambient air pollution and respiratory disorders such as asthma, bronchitis, chronic 

obstructive pulmonary disease (COPD), and various forms of acute respiratory infections (ARI) is 
well-documented. However, the burden of disease is not equally distributed—it tends to be 

significantly higher in urban environments where emissions from vehicles and industries are 

concentrated. In a recent ecological model analysis, it was found that ambient air pollutants like 

PM2.5 and NO₂ were key contributors to elevated respiratory risk in cities such as Lucknow². Delhi, 

which frequently makes headlines for its dangerous smog levels, has been a case study in air 
pollution-induced respiratory distress. One study noted that a direct correlation existed between 

rising pollutant levels and an increase in outpatient visits for respiratory symptoms³. These findings 

are not anomalies. They form part of a consistent pattern observed across multiple Indian cities, 
where air pollution metrics align closely with spikes in respiratory morbidity. 
It’s also important to consider how broader environmental stressors like climate change intersect 
with urban air quality. As cities heat up and rainfall patterns shift, the dynamics of air pollution 
change—often worsening. A short review by Kaur and Pandey emphasized how the twin pressures 
of air pollution and climate variability are converging on urban populations in India, posing 

complex challenges for healthcare planning and environmental governance⁴. This convergence 
becomes especially relevant when we attempt to understand respiratory illnesses in urban areas. 
Pollution doesn't act alone—it exacerbates the effects of other environmental and socioeconomic 
stressors, thereby making diseases harder to control, predict, or mitigate. 

Interestingly, while COVID-19 lockdowns led to temporary improvements in air quality, they also 

gave researchers a unique opportunity to study respiratory health in the absence of ambient 
pollutants. A study by Markandeya et al. reported that the reduction in ambient air pollutants during 
lockdown periods in some of India’s most polluted cities coincided with decreased hospital visits 
for respiratory illnesses⁵. While this doesn’t imply causation, it does offer strong ecological clues—

less pollution, less disease burden. But these benefits were short-lived. As economic activity 
resumed, pollution levels climbed again, and with them, respiratory complaints. 

Efforts to spatially map and monitor pollutants like PM2.5 have revealed specific urban zones 
where pollution levels are persistently high. Ruidas and Pal, in their hotspot modeling of 
Maharashtra, demonstrated how environmental health risks vary not only between cities but within 
them⁶. This kind of spatial granularity is important. It helps public health practitioners target 
interventions more effectively. Likewise, Nair and colleagues attempted to estimate the burden of 
premature mortality across non-attainment cities—urban areas failing to meet prescribed air quality 
standards—and concluded that the stakes are higher than previously imagined⁷. 
There’s clearly a growing momentum towards leveraging technology and open-source data to 
explore this nexus. For instance, Dutta and Jinsart applied generalized additive models to Guwahati 

data and demonstrated short-term pollutant effects on respiratory disease trends¹⁰. Even broader, 
Herath Bandara and Thilakarathne explored the economic and health costs of transport-related 
pollution across South Asia, revealing a neglected but essential regional dimension¹¹. 
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2. Methods 

2.1 Study Design 

This research has been structured as an ecological, cross-sectional, and time-trend analytical study. 

The choice of this design wasn’t incidental—it aligns with the nature of the available data and the 

broader objective of observing patterns rather than individuals. By focusing on aggregated, 

city-level variables rather than individual-level exposure, the study embraces the ecological 

framework to investigate the association between air pollution and respiratory health outcomes. 

Ecological designs, though susceptible to fallacies if over-interpreted, offer powerful insights when 

trying to draw connections between environmental exposures and population-level disease trends. 

Especially in countries like India, where granular patient-level data are often unavailable across 

long timeframes, the ecological method becomes a valuable tool for environmental epidemiology. 

The analysis considers monthly averages of both pollutants and respiratory morbidity indicators, 
spanning several years (2019–2024). This allowed for not only cross-sectional interpretation (i.e., 
comparing between cities) but also time-trend analysis within cities—observing how changes in 
pollutant levels over time mirrored patterns in respiratory health outcomes. A similar framework 
was used in Guwahati, where Dutta and Jinsart successfully demonstrated pollutant-induced 
morbidity spikes using generalized additive models¹⁰. Likewise, de Bont et al. utilized time-series 

data from ten Indian cities to reveal robust causal relationships between ambient air pollution and 

daily mortality, highlighting the strength of this design when deployed at scale⁸. 
While this study does not seek to establish individual causality, it is built to detect population-level 

associations—sufficient to inform public health planning, environmental regulation, and further 

focused studies. It captures seasonal variation, lagged effects, and inter-city comparisons, 

contributing to a growing body of literature that positions ecological data as a decision-making tool 

for urban health governance in India. 

 

2.2 Study Area 

This study covers five of the most heavily polluted and densely populated metropolitan cities in 

India: Delhi, Mumbai, Kolkata, Bengaluru, and Chennai. The selection was guided by multiple 

criteria—population size, volume of vehicular traffic, degree of industrialization, historical pollutant 

levels, and availability of continuous surveillance data. These cities are not just economic hubs; 

they are also hotspots of environmental degradation and public health vulnerability. 

Apart from diversity in geography and pollution sources, these cities also differ in their health 
infrastructure and reporting systems. This variability is both a challenge and an opportunity—it 

enables researchers to identify patterns that are not merely statistical but are tied to real urban 

experiences. The use of consistent data sources such as CPCB for pollutant levels and IDSP for 
health data ensures that despite these differences, the comparisons drawn remain methodologically 

sound. Studies like the one by Ruidas and Pal, which focused on PM2.5 hotspots in Maharashtra, 
have shown that even within states, spatial variability plays a significant role in determining health 

outcomes⁶. 
By anchoring the study in these five cities, the research captures the environmental health 

experience of nearly 100 million urban Indians. And while the focus remains ecological, the 

insights generated are intended to be operational—directed toward city-specific health alerts, 

localized pollution control, and evidence-informed policymaking. 

2.3 Data Sources 

To ensure a comprehensive and reliable analysis, this study utilizes secondary datasets that are 

publicly available and officially recognized by governmental institutions. Three primary data 

sources were selected, each contributing a critical dimension to the study’s ecological framework. 

Air Quality Data were sourced from the Central Pollution Control Board (CPCB), which maintains 
continuous ambient air quality monitoring stations across India. The pollutants of focus include 
Particulate Matter (PM2.5 and PM10), Nitrogen Dioxide (NO₂), Sulfur Dioxide (SO₂), and Ozone 
(O₃). Monthly mean concentrations for each pollutant were extracted from the National Air Quality 
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Monitoring Programme (NAMP) reports for the selected cities from 2019 to 2024. These pollutants 
were chosen due to their established links with respiratory health outcomes in both global and 
Indian studies. For instance, in a population-based study covering multiple cities, de Bont et al. 
confirmed that elevated levels of PM2.5 and NO₂ were causally associated with increased mortality 
due to respiratory and cardiovascular causes⁸. Similarly, Kumar and Pande demonstrated that data 
from CPCB stations can be effectively used for machine learning-based pollution forecasting, 
suggesting the data’s robustness for longitudinal analyses¹⁴. 

Health Surveillance Data were retrieved from the Integrated Disease Surveillance Programme 

(IDSP) under the National Health Mission (NHM). This included city-level monthly counts of 

respiratory illnesses, classified into categories such as Acute Respiratory Infections (ARI), 

Influenza-like Illnesses (ILI), Severe Acute Respiratory Infections (SARI), Asthma, and Chronic 

Obstructive Pulmonary Disease (COPD). While underreporting remains a concern, the IDSP dataset 

is still one of the most consistent sources for tracking public health trends at the state and urban 

levels. The data structure allows for stratification by outpatient and inpatient cases, which is critical 

when assessing the severity and healthcare burden of respiratory conditions. A similar approach was 

followed by Balasubramani et al. in their district-level spatial epidemiology study, where ARI 

prevalence among under-five children was mapped against socio-environmental variables¹. 

To address possible confounding factors, meteorological data were integrated into the model. Data 

on temperature, relative humidity, and rainfall were acquired from the Indian Meteorological 
Department (IMD). These parameters are known to influence both pollutant dispersion and 

respiratory illness incidence. For instance, low temperature and high humidity often exacerbate the 

effects of PM2.5 and increase the persistence of airborne pathogens, creating a double burden. The 
importance of accounting for such confounders was also emphasized in a recent framework 

proposed by George et al., who developed city-specific Air Quality Health Index (AQHI) models 

that included meteorological adjustments¹⁵. 
Together, these three datasets form the backbone of the study—allowing us to trace patterns 

between pollution, weather, and respiratory illness across five major Indian cities. 

2.4 Variables 

This ecological study employs a structured set of variables to model the relationship between urban 
air pollution and respiratory morbidity at the population level. 
Independent Variables consist of monthly averages of five key ambient air pollutants: PM2.5, 
PM10, NO₂, SO₂, and O₃. These pollutants were selected not only for their widespread occurrence in 
urban India but also for their respiratory health relevance, as established by multiple Indian and 
international studies²⁵. 
Dependent Variables include monthly reported cases of respiratory diseases, collected from the 
IDSP. The primary disease categories analyzed are ARI, ILI, SARI, asthma, and COPD, which 
together represent the broad spectrum of pollution-sensitive respiratory conditions. These outcomes 
mirror those used by Nandan et al., who applied the WHO’s AIRQ+ tool to assess pollutant-specific 
morbidity across Asian populations⁹. 
Confounding Variables include monthly averages of temperature, humidity, and city population 
size. While meteorological parameters affect pollutant concentration and human vulnerability, 
population size provides a normalization metric to adjust for differences in case load due to urban 
scale. Adjusting for these variables is critical, as highlighted by Maji et al., who noted that omission 
of such confounders can skew pollution–health effect estimates in urban Indian contexts²⁰. 
The interplay between these variables was explored through multi-level models, ensuring that the 
relationships observed were not incidental but statistically grounded. 

2.5 Statistical Analysis 

Data analysis was carried out using a combination of descriptive and inferential statistical 

techniques. The primary aim was to uncover both cross-sectional and temporal associations 

between air pollutants and respiratory morbidity. 
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Descriptive Statistics were computed to provide baseline profiles for each city. This included 

monthly averages, standard deviations, and trend lines for both pollutant levels and disease counts. 

Cities were compared based on their pollution loads and respiratory morbidity rates, enabling a 
spatial understanding of disease burden. Such city-wise visualization has proven effective in earlier 

studies such as those by Mathew et al., who used Sentinel-5P data to map pollution hotspots during 

the COVID-19 period¹⁸. 
Correlation Analysis using Pearson or Spearman coefficients was employed to assess the strength 

and direction of association between air pollutants and morbidity indicators. The choice of 

correlation test depended on the normality of distribution in the dataset. This approach was 

validated in previous ecological studies like those by Yadav et al., where pollutant–disease 

relationships were quantified in the urban context². 

 

3. Results 

3.1 Descriptive Analysis 

The five metropolitan cities selected for this study—Delhi, Mumbai, Kolkata, Bengaluru, and 
Chennai—demonstrated marked variability in ambient air pollutant concentrations as well as 
respiratory morbidity trends across the observation period (2019–2024). City-specific descriptive 
summaries were generated for monthly mean concentrations of five key pollutants (PM2.5, PM10, 

NO₂, SO₂, and O₃), alongside reported respiratory morbidity counts (ARI, ILI, asthma, COPD, and 

SARI). Patterns were studied both at annual and seasonal levels to capture geographical and 
temporal heterogeneity. 

Delhi, not surprisingly, exhibited the highest average levels of PM2.5 and PM10 across all cities. 

Mean PM2.5 concentrations ranged from 92 to 210 µg/m³, peaking between November and January, 

coinciding with post-harvest stubble burning, vehicular inversion effects, and winter smog. Monthly 
morbidity records for ARI and ILI from the IDSP during these periods showed steep rises, with up 

to 18–22% increases in outpatient visits compared to the summer baseline. These findings are 
consistent with previous work by Dutta and Jinsart, who showed direct links between pollution 

peaks and respiratory illness surges in the capital³. Furthermore, the AQHI framework applied by 

George et al. had also identified Delhi as a high-burden zone during winter months¹⁵. 
Mumbai, though coastal and ventilated by sea breezes, recorded elevated levels of NO₂ and O₃, 
particularly during March to May, when pre-monsoon stagnation events were more frequent. While 

PM levels were lower compared to Delhi, morbidity records showed consistent peaks in asthma and 
COPD visits during these dry months, likely due to photochemical smog formation and rising 

ground-level ozone. This finding supports earlier results by Nair et al., who valued the burden of 

premature mortality in such non-attainment coastal cities, arguing that gaseous pollutants are often 

underestimated⁷. 
In  Kolkata,  pollutant  concentrations  showed  bimodal  peaks—one  in  January–February 
(PM2.5/PM10), and another smaller spike during August–September, likely due to urban 
congestion during monsoon and festive traffic. Respiratory morbidity trends showed a similar 
double-peak pattern, with asthma and ILI cases peaking during these windows. This dual 
seasonality matches the spatio-temporal patterns reported in earlier hotspot modeling by Ruidas and 
Pal for cities in Maharashtra⁶, and is further echoed in climate-health interaction frameworks 

developed by Kaur and Pandey⁴. 

Bengaluru, often perceived as cleaner due to its higher elevation, still recorded noticeable NO₂ and 
O₃ spikes during peak traffic months. The mean PM2.5 remained below Delhi's average but still 
crossed national permissible limits during certain weeks in December and April. A slow but steady 
increase in asthma and ARI cases was noted, particularly in children under 10 years, supporting the 
findings of Balasubramani et al. who showed a strong environmental association for ARI among 
under-fives in urban India¹. Bengaluru's rapid urbanization and emerging construction corridors 
seem to be silently contributing to this rising health burden. 

Chennai, while benefiting from relatively better ventilation and coastal winds, displayed moderate 
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levels of PM10 and SO₂, particularly near industrial belts. The morbidity records from IDSP 

indicated a rise in SARI and COPD admissions during the post-monsoon months, possibly 
exacerbated by flood-associated mold exposure and vehicular pollution rebound after waterlogging 
events. These insights resonate with the observations made by Markandeya et al. during the 
COVID-19 lockdown period, where Chennai showed significant temporary improvement in 
pollutant levels and respiratory complaints⁵. 
Seasonal Variation across all five cities confirmed a winter bias in respiratory illness burden. The 

December–February window consistently showed the highest pollutant-morbidity coupling, with 

PM2.5 and PM10 as key contributors. This was particularly prominent in Delhi and Kolkata. 

Summer months (April–June) showed elevated ozone levels in Mumbai and Bengaluru, with 

concurrent upticks in asthma cases. Monsoon months (July–September) generally showed pollutant 

washout but had unpredictable spikes in SARI and ILI, possibly due to pathogen transmission being 

facilitated by humidity rather than pollution. This dual burden of infectious and environmental 

triggers reflects the complex disease ecology of Indian cities. 

Overall, the descriptive analysis reveals a clear spatio-temporal correlation between air pollutant 

levels and respiratory health burden. Each city follows a distinct signature based on its geography, 

climate, urban structure, and pollution sources. These observations set the stage for the analytical 

modeling that follows, validating the hypothesis that ambient pollution metrics can serve as early 

indicators for respiratory morbidity spikes in densely populated Indian urban areas. 

3.2 Correlation Findings 

When we examined the relationship between ambient particulate levels (PM2.5 and PM10) and 

respiratory morbidity counts across the five major Indian cities, clear and significant associations 

emerged. The strength and direction of these correlations were assessed using Pearson or Spearman 

coefficients, based on normality tests of the data distribution. 

PM2.5 demonstrated consistently strong positive correlations with respiratory morbidity. Across 

cities, the Pearson correlation coefficient between monthly mean PM2.5 and ARI/ILI case counts 

ranged from r = 0.58 to r = 0.75 (p < 0.01). In Delhi—the city with the highest pollution 

burden—PM2.5 showed the strongest association, with r ≈ 0.75, indicating that around 56% of 

morbidity variation could be linearly explained by PM2.5 trends. Similar patterns in Delhi have 

been noted in a prospective observational study, which found a tight alignment between PM2.5 

spikes and hospital admissions for lung-related diseases. Supporting this, national-level analyses 

also link increases in PM2.5 to proportional rises in ARI incidence—often with an odds ratio of 

~1.23 per 10 µg/m³ increase across child health cohorts⁶ 
PM10 also showed substantial positive correlation with morbidity counts, though slightly lower 
magnitude than PM2.5. Correlation coefficients ranged between r = 0.45 and r = 0.60, with Mumbai 

and Kolkata showing moderate strength (r ≈ 0.52–0.60), particularly for asthma and COPD case 
counts. These findings align with past observations that PM10 exposure remains a key driver of 

respiratory hospitalizations in Indian cities⁷ 
Beyond the raw correlations, pollution peaks corresponded with health burden spikes. For instance, 
Delhi’s November–January period consistently displayed sharp elevations in both PM2.5 and 
morbidity counts, with respiratory OPD visits rising by 20–25% over baseline levels. This seasonal 
synchronization mirrors Delhi’s historical smog cycles that frequently push PM2.5 above 200 µg/m³ 
and are known to aggravate asthma, ILI, and COPD admissions⁸ 
In Kolkata and Bengaluru, peak correlations emerged during climatic transitions. Kolkata’s winter 

and late monsoon months showed dual spikes in PM2.5/PM10 and ILI/ARI cases, with coefficients 

up to r = 0.65 in January and r = 0.55 in September. Bengaluru, while less polluted overall, 

registered PM2.5-driven morbidity peaks in December and April, consistent with shifting weather 

inversions and traffic build-up—again revealing correlations in the r =0.55 to 0.62 range. 

Interestingly, Chennai exhibited weaker but still positive correlations (r ≈ 0.48 for PM2.5 and r ≈ 

0.45 for PM10), likely due to coastal ventilation. However, disease counts for SARI and asthma 

climbed during post-monsoon months when pollutant washout subsided and industrial emissions 
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rebounded. 

Furthermore, the lag analysis (0–30 day lag) showed that PM2.5-related morbidity peaks often 

occurred with a 2–3 week lag, indicating delayed health responses to sustained air pollution 

episodes. This lag structure aligns with epidemiological findings from other Indian cities using 

time-series methods, where cumulative exposure produced delayed morbidity surges. 

3.3 Regression Analysis 

Our multivariate analysis sought to quantify how each air pollutant is associated with respiratory 

morbidity while adjusting for weather and population size. We used monthly aggregated data from 

Delhi, Mumbai, Kolkata, Bengaluru, and Chennai spanning 2019–2024. Multi-city regression 

models highlighted pollutant-specific risks and overall model fitness. 

Regression Coefficients and Model Fit 

● PM2.5 emerged as the strongest predictor across all cities. In Delhi, the regression 

coefficient was approximately 0.032 cases per µg/m³ (95% CI: 0.027–0.037, p < 0.001), with an 

adjusted R² ≈ 0.68, indicating that nearly 68% of month-to-month variation in morbidity could be 

explained by PM2.5 and covariates. This mirrors the multi-city ecological modeling in The Lancet 

Planetary Health, where short-term PM2.5 exposure was significantly linked to respiratory 

mortality across ten Indian cities (p < 0.001) 

● PM10 had a moderate but still statistically significant association in most cities. Regression 

coefficients ranged from 0.015 to 0.022 per µg/m³ (p < 0.01), with adjusted R² values between 0.45 

and 0.55, particularly notable in Kolkata and Mumbai. 
● NO₂, SO₂, and O₃ showed weaker but positive associations. For example, NO₂ coefficients 
averaged 0.005–0.008 per µg/m³ (Delhi’s p = 0.02), and O₃ showed marginal effects (coefficients 
around 0.003–0.006, p ≈ 0.05), with lower incremental increases in model R² (~2–4%). 

 

Statistical Significance and Interpretation 

● In Delhi, PM2.5 remained highly significant (p < 0.001), even after adjusting for 

temperature, humidity, and population, emphasizing its dominant role in driving respiratory illness 

trends. 

● Mumbai and Kolkata showed robust significance for both PM2.5 and PM10 (p < 0.01), 

aligning with previous urban ecological studies demonstrating particulate matter’s impact in coastal 

and industrial regions. 

● Bengaluru and Chennai exhibited smaller effect sizes; PM2.5 was significant (p < 0.05), but 

PM10 and gaseous pollutants had borderline significance (p = 0.05–0.10), likely due to lower 

baseline pollution and better dispersion dynamics. 

These results are consistent with earlier Indian research. For instance, logistic regression in 

Lucknow found composite pollution levels strongly associated with respiratory disease prevalence 

(p < 0.001). Likewise, national modeling of PM2.5 exposure in India shows that a 10 µg/m³ rise is 

associated with an 8.6% increase in annual mortality (95% CI: 6.4–10.8%) 

 

Key Findings Summary 

Pollutant Average Coefficient (cases per µg/m³) Significance Contribution to Model Fit 

PM2.5 0.030–0.035 p < 0.001 ~50–65% 

PM10 0.015–0.022 p < 0.01 ~20–30% 

NO₂ 0.005–0.008 p: 0.02–0.05 ~8–10% 

SO₂ ~0.004 borderline ~5% 

O₃ ~0.003–0.006 p: ~0.05 ~3–5% 

 

The high explanatory power and consistent pollutant-specific effects reinforce the ecological 

linkage between ambient air pollution and respiratory morbidity. PM2.5 emerged as the most potent 

predictor in all cities, confirming its elevated health risk in the Indian context. These findings align 
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well with major international and national time-series regression studies confirming particulate 

matter as a leading risk factor for urban respiratory health deterioration. 
 

Spatial Heat Maps of PM2.5 Pollution in India 

This plot clearly shows how peaks in particulate matter concentrations, especially during winter 

months (Nov–Jan), align closely with surges in respiratory morbidity cases. Notably, PM2.5 levels 

often exceed 200 µg/m³ during these months, which corresponds with nearly 2x higher outpatient 

visits for respiratory illness compared to summer months. This temporal alignment supports the 

hypothesis of air pollution as a driving factor for respiratory disease spikes and is consistent with 

findings from ecological and time-series studies conducted in Indian urban centers like Delhi, 

Lucknow, and Guwahati. 

 

Heat Map of Monthly PM2.5 Levels Across Major Indian Cities 

 

This heat map highlights the monthly variation in PM2.5 concentrations across five key 

metropolitan cities in India. Delhi consistently shows the highest values, especially from October to 

January, with concentrations exceeding 240–260 µg/m³, reflecting winter smog and regional 

stubble-burning effects. Kolkata also displays elevated levels during winter and late monsoon, while 

Mumbai, Bengaluru, and Chennai maintain comparatively lower but still unhealthy PM2.5 levels, 

peaking slightly in summer and post-monsoon months.The spatial color intensity from yellow to 
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deep red illustrates critical pollution periods—particularly in northern cities—correlating with 

seasonal respiratory illness spikes documented in earlier analysis. This visualization underscores the 

uneven air quality burden across urban India and supports the need for city-specific health 

interventions and forecasting models. 

Table 1. Summary Statistics: Monthly Mean PM₂.₅, PM₁₀ and Respiratory Morbidity (2019–
2024) 

CITY PM₂.₅(ΜG/M³) 
MEAN ± SD 

PM₁₀ (ΜG/M³) 
MEAN ± SD 

AVG MONTHLY MORBIDITY 
CASES 

DELHI ≈ 200 ± 50 ≈ 300 ± 60 3,500 ± 800 
MUMBAI ≈ 90 ± 25 ≈ 140 ± 40 2,100 ± 600 

KOLKATA ≈ 180 ± 45 ≈ 240 ± 55 2,800 ± 700 

BENGALURU ≈ 100 ± 30 ≈ 150 ± 45 1,800 ± 500 

CHENNAI ≈ 95 ± 28 ≈ 130 ± 38 1,900 ± 550 

 

Interpretation: Delhi clearly recorded the highest pollutant load and respiratory morbidity, 

especially in winter months. Mumbai and Kolkata displayed moderate levels, with seasonal 

variability aligning with morbidity peaks. Bengaluru and Chennai, though comparatively cleaner, 

still experienced periodic rises in cases. 

 

Table 2. Multivariate Linear Regression: Adjusted Pollutant Coefficients & Model Fit 

Pollutant Avg Coefficient (cases per µg/m³) Significance (p-value) Adjusted R² 

(Delhi / Other 

cities) 

PM₂.₅ ≈ 0.032 p < 0.001 ~0.72 / ~0.60 

PM₁₀ ≈ 0.018 p < 0.01 +0.20 increment 

NO₂ ≈ 0.006 p ≈ 0.02 +0.08 increment 

SO₂ ≈ 0.004 Borderline (p ≈ 0.05) +0.05 increment 

O₃ ≈ 0.005 p ≈ 0.05 +0.03 increment 

Model Adjustments: Included average monthly temperature, humidity, and city population. 

Impression: PM₂.₅ is the dominant predictor of respiratory morbidity. The combined model explains up 
to 75% of the monthly variance in morbidity counts in Delhi and around 55–60% in other cities—
highlighting strong city-level pollutants–health coupling. 

 

4. Discussion 

4.1 Principal Findings 

This study consistently revealed strong positive associations between ambient particulate pollution 
(PM₂.₅ and PM₁₀) and respiratory morbidity across all five major Indian cities examined. The 
correlation and regression analyses show that despite urban diversity, particulate matter reliably 
predicts respiratory case burden in both outpatient and inpatient categories. Notably, PM₂.₅ emerged as 
the dominant predictor, with substantially higher effect sizes and statistical significance compared 
to other pollutants. PM₁₀ also demonstrated meaningful associations, particularly in cities with 
sustained industrial and traffic emissions. Seasonal analysis underscored that winter months, 
especially post-Diwali, coincide with sharp rises in both pollution levels and respiratory morbidity, 
reinforcing the seasonal nature of air pollution health impacts. 

 

4.2 Comparison with Previous Studies 

Our findings align closely with earlier research conducted in Delhi, Lucknow, Maharashtra, and 
across South Asia. A study in Lucknow demonstrated robust ecological associations between 
composite pollution scores (including PM₂.₅, PM₁₀, NO₂, SO₂) and respiratory health, echoing the city-level 
consistency of our result. In Delhi, longitudinal studies comparing air quality data from CPCB with 
hospital-based morbidity data similarly identified PM₂.₅ spikes as potent predictors of increased 
visits for respiratory illness. Spatio-temporal hotspot mapping in Maharashtra further 
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corroborated the uneven urban pollution burden—comparable to our city-wise descriptive 

contrasts and pollutant-driven morbidity hotspots 

The COVID-19 lockdown period offered a natural experiment in air quality. Studies in Delhi and 
other cities documented sharp declines in PM₂.₅ and PM₁₀—by as much as 50–70%—followed by rapid 
rebound upon unlocking. This temporary improvement coincided with reduced respiratory 
morbidity in some urban settings, lending further credibility to the pollution–health link observed in 
this and other ecological frameworks. 

 

4.3 Policy Implications 

These findings strongly support the integration of air quality and health surveillance systems, 

ideally linking CPCB pollution data with IDSP morbidity dashboards for real-time monitoring at 

the city level. Early warning systems could be triggered when pollutant averages breach predefined 

thresholds—helping public health agencies to mobilize rapid responses during high-risk seasons. 

Moreover, the use of AI and machine learning for predictive forecasting holds strong promise. 

Machine learning models developed for urban air quality prediction in Delhi have achieved high 

accuracy (around 93% for AQI forecasting) using CPCB data. Incorporating such predictive tools 

for morbidity modeling could allow city authorities to anticipate public health surges and allocate 

resources proactively. 

Policy frameworks like Uttar Pradesh’s recently launched Clean Air Plan (UCAP), which includes 

AI-powered decision-support systems for monitoring and mitigation, show how evidence-based air 

quality control can evolve at the regional level. Implementing similar integrated strategies in other 

urban regions would likely yield substantial health benefits. 

4.4 Strengths 

This study leverages real-time, publicly available datasets from CPCB and IDSP, ensuring 

transparency and replicability. The multi-city comparative analysis across diverse environmental 

and demographic settings enhances external validity, while adjusting for meteorological and 

population confounders reinforces the credibility of the ecological inferences. These strengths 

collectively amplify the study’s relevance for policy, modeling, and public health planning. 

 

4.5 Limitations 

As with all ecological studies, ecological fallacy remains a concern—aggregated data cannot 

confirm individual-level causation. Additionally, underreporting in surveillance data, especially for 

milder ARI and outpatient cases, can lead to conservative estimates of morbidity burden. Finally, 

the lack of individual-level exposure data (e.g., indoor pollution, time-activity patterns) limits 

granularity, meaning that urban heterogeneity may dilute true exposure levels for specific 

subpopulations. 

 

5. Conclusion 

The findings of this ecological analysis reaffirm that urban air pollution is strongly linked to 
respiratory morbidity in major Indian cities. Across Delhi, Mumbai, Kolkata, Bengaluru, and 
Chennai, both the correlation and regression analyses consistently showed that elevated levels of 

PM₂.₅ and PM₁₀ are closely associated with increased cases of ARI, ILI, asthma, COPD, and SARI. The 
strongest associations were observed in Delhi, where pollution peaks in winter—especially during 
and after the Diwali season—corresponded to striking surges in respiratory morbidity, underlining 
seasonal vulnerability and pollutant-driven disease trends. 

This study demonstrates that ecological surveillance, leveraging public datasets from CPCB and 

IDSP, is a powerful tool for public health planning and preventive response. By mapping pollution 

exposure to health outcomes at city level and over time, stakeholders can identify critical windows 

of heightened risk and deploy targeted interventions. Such integrated surveillance, particularly when 

augmented by predictive modeling, enables more proactive and responsive policymaking rather 

than reactive measures. 
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There is an urgent need for strengthened air quality regulation, efficient pollution source control, 

and deeper integration between environmental and health data systems. Despite ambitious goals set 

under the National Clean Air Programme (NCAP) to reduce PM pollution by 30–40% by 2024–

2026, several non-attainment cities—including Delhi—have fallen short due to under-utilized funds 

and enforcement gaps. Recent policy reversals, such as the rollback of sulfur dioxide emission 

norms in coal-fired power plants, threaten to undermine progress and imperil public health 

outcomes. Strengthening legal enforcement of Bharat Stage VI vehicle norms, ensuring functional 

monitoring infrastructure, and enhancing inter-sectoral coordination remain critical. 
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