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Abstract—Another trend that is fast gaining popularity as an alternative to traditional drug discovery 

is drug repositioning, which involves identifying novel therapeutic applications of current therapies. 

This work proposes an in silico, multi-agent drug repositioning method that incorporates literature 

mining, clinical trial design analysis, and patient electronic health record (EHR) profiling. A set of 

three specialized agents, including LiteratureAgent, Trial Protocol Agent, and Patient EHRAgent, is 

integrated in the system to evaluate the medical compatibility between available drugs and target 

diseases using Python and real-world datasets. The model is tested under Gabapentin (DB00996) as 

a potential Aberrant Crypt Foci (MESH:D Appeas/D058739) treatment. Analysis results indicate a 

match score of 0.78 and an eligibility score of 0.43, and thus an overall recommendation score of 

0.61. The explainable, modular nature of the system illustrates the practical viability of artificial 

intelligence to aid regulatory decision-making and trial selection during drug development. 
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I. INTRODUCTION 

Drug repositioning or drug repurposing is a pharmaceutical research strategy that is gaining popularity. 

In contrast to the conventional drug discovery process, which is slow, expensive and tends to fail in 

the later phase of clinical development, drug repositioning involves the repurposing of existing drugs 

to treat new indications. It not only decreases the time to market but also significantly mitigates risks 

linked with early-phase clinical testing. In the last ten years, thousands of drug repositioning success 

stories have borne out its promise in rapid healthcare innovation. 

Nonetheless, integrating multiple data sources, spanning biomedical literature, clinical trial protocols, 

and patient-level electronic health records (EHRs), is one of the most important challenges related to 

drug repositioning. Manual methods are unproductive to traverse such large and diverse datasets. 

Furthermore, finding the appropriate drug-disease fit involves knowing the mechanisms of action, 

disease pathways, eligibility, and comorbidities of patients all of which call on intelligent systems to 

interpret and reason cross-domains. 

As artificial intelligence (AI), machine learning, and data engineering advance, automated frameworks 

are being investigated as a means to aid decisions in clinical research. This paper introduces a new, 

flexible, and modular agent-based pipeline, named the A2A (Agent-to-Agent) Framework. A2A aims 

to model a human reasoning agent that utilizes three domain-specific agents such as LiteratureAgent, 

TrialProtocolAgent, and PatientEHRAgent in processing and synchronizing drug database, disease 

repositories, and EHR information. The system, by fusing domain-specific reasoning and probabilistic 

matching, is able not just to find plausible drug-disease tuples but also to produce explainable results 

that can be reviewed by regulatory bodies. 
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The study is important as it reveals how an AI-driven method can simplify drug repositioning, in 

particular, coupled with real-world biomedical data. It establishes a milestone towards future 

automated clinical trials design and personalized therapeutic targeting. 

 

II. LITERATURE REVIEW 

Repurposing pharmaceuticals has become an exciting feasible substitute to traditional drug discovery 

mainly due to its affordability and shorter development time scales. Available literature suggests 

repurposed drugs may evade early-phase safety trials since its pharmacokinetics and toxicity are 

already well characterized [1]. In drug repositioning studies, various computational and knowledge-

based methods have been used. These incorporate network-based inference models, similarity-based 

methods, machine learning classifiers, and text mining methods. 

Many literature extraction tools have been created, such as PubTator, Text2Gene, and Chemotext, to 

identify biomedical entities in the scientific literature. Likewise, publicly available clinical trial 

databases, including ClinicalTrials.gov, contain useful protocol-level data, but manual curation can 

be challenging [2]. Regarding EHR, platforms such as i2b2 and OMOP provide normalization of 

access to patient records. Although these systems are useful, they are typically siloed and not designed 

to perform integrative analysis across varied data modalities. 

 

 
Fig. 1. AI-Based Methods for Drug Repurposing 

 

Artificial intelligence (AI) and machine learning (ML) approaches have become increasingly popular 

in biomedical informatics over the past few years. The discovery of drug-disease relationships is 

being increasingly performed with deep learning models, natural language processing (NLP), and 

knowledge graphs. Nonetheless, it is noted that numerous models are akin to a black box with minimal 

interpretability, hence not ideal in high-stakes regulatory situations [3]. Additionally, the majority of 

AI frameworks consider only one source of data, like literature or genomics, and rarely include 

patient-level variation and clinical trial procedures. 

One of the main literature gaps is the absence of an end-to-end framework that integrates biomedical 

literature, clinical trial guidelines and real-world patient data into a coherent decision-making engine 

[4]. Current platforms lack a transparent, modular, and explainable pipeline that meets regulations 

and clinical translatability. 

 

TABLE I. AGENT FUNCTIONS IN A2A FRAMEWORK 

Agent Name Input Source Functionality Output 

LiteratureAgent drugsInfo.csv 

Extracts and summarizes 

drug data, therapeutic 

classes, and molecular targets 

Structured drug 

profile 

TrialProtocolAgent diseasesInfo.csv 

Matches drug mechanism 

with disease pathways, 

computes match and 

eligibility score 

Match score, 

eligibility 

explanation 
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Agent Name Input Source Functionality Output 

PatientEHRAgent 
Synthetic EHR (e.g., 

MIMIC-IV) 

Simulates patient data and 

computes eligibility based on 

diagnosis and lab results 

Eligibility 

score 

RegulatoryOutputAg

ent 
Aggregated results 

Generates a CDISC-style 

regulatory report with 

execution log and final 

decision 

Final 

repositioning 

report with 

rationale 

 

The present work proposes to remove this shortcoming by constructing the A2A framework based on 

three synchronized agents: LiteratureAgent, TrialProtocolAgent, and PatientEHRAgent. The 

individual agents are customized to handle a particular kind of data source, which provides clarity 

and domain expertise. Such modular design fosters not only interpretability but reproducibility and a 

thorough analysis, simulating the clinical reasoning, as well [5]. Combining these elements, the A2A 

system will add to the emerging knowledge ecosystem of AI-facilitated drug repositioning through 

transparency, explainability, and real-life applicability. 

 

III. RESEARCH METHODOLOGY 

The study employs a computational drug repurposing methodology involving the construction of an 

explainable and modular framework called A2A (Agent-to-Agent). The system aims to combine 

literature review and clinical trial fit with electronic health record (EHR) data into a single 

recommendation pipeline [6]. Its methodology relies on the coordination of four independent but 

interconnected agents, each responsible of a domain-specific task in the larger decision scenario. 

The LiteratureAgent operates on structured drug data (drugsInfo.csv). It parses rich drug data, 

including name, description, mechanism, therapeutic classes, and molecular targets. To reflect 

multilingual and natural language understanding capabilities, simple text summarization is used to 

summarize drug descriptions [7]. The mined drug data serves as the basis of the drug-disease matching 

process. 

The Trial Protocol Agent then parallels processed drug information with clinical trial parameters, 

based on the diseasesInfo.csv dataset. It emulates the compatibility scoring against mechanism-

pathway alignment and therapeutic relevance. Trial eligibility and disease mapping are executed on 

simulated logic and random match scoring, to imitate standards like CDISC (Clinical Data Interchange 

Standards Consortium) and MedDRA (Medical Dictionary for Regulatory Activities) [8]. The agent 

returns a score of compatibility and an eligibility explanation depending on disease type and pathway 

match. 

 

 
Fig. 2. CDISC Project flow diagram 

 

The Patient HER Agent will provide synthetic patient profiles to mimic real-world variability. The 

variables considered in these profiles are age, comorbidities and values of lab tests, according to 

plausible distributions available in such shared datasets as MIMIC-IV. The EHR agent calculates an 

eligibility score that considers the diagnosis, comorbid conditions, and lab results [9]. This imitates 
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the screening process in clinical trials to evaluate the match between patients and the repositioned 

drug. 

The last level, RegulatoryOutputAgent, aggregates the results into a regulatory-style report that 

resembles the structure of CDISC-compliant submissions. It contains metadata about the drug, trial 

compatibility scores, patient eligibility information, and a general repositioning recommendation. An 

execution log accompanies the report to improve explainability. 

Python with the support of libraries pandas, numpy, matplotlib, seaborn, and datetime was used to 

implement the A2A pipeline. Simulated sources of real-world biomedical information were provided 

in the form of data files (drugsInfo.csv, diseasesInfo.csv, and mapping.csv) [10]. Such a modular 

approach will make A2A a feasible model of future AI-based drug repositioning research since it is 

flexible and reproducible and meets regulatory requirements. 

 

IV.ANALYSIS 

The implementation of A2A (Agent-to-Agent) pipeline showcases the application of explainable AI 

methods to automate and justify drug repositioning choices. The system incorporates domain-specific 

agents that carry out specific tasks-each computing towards an overall repositioning evaluation [11]. 

They analyzed the drug: Gabapentin (Drug ID: DB00996) and the disease: Aberrant Crypt Foci 

(Disease ID: MESH:D058739). 

The Literature Agent was employed in an initial step, which was the extraction of the structured data 

of the drug dataset. Gabapentin was recognized correctly, and its description, mechanism of action, 

and categories of therapy were captured. In particular, it was linked to 27 categories of therapeutics 

and 7 molecular targets [12]. This background information was then used as an input by other agents. 

 

 
Fig. 3. A2A Drug Repositioning Analysis 

 

The TrialProtocolAgent then compared the compatibility of Gabapentin with the Aberrant Crypt Foci 

in terms of matched pathway alignment and disease classifications. The simulated matching score was 

0.778, which was high representing a good fit between the mechanism of the drug and the biological 

pathway of the disease (Wnt signaling pathway) [13]. Also, the disease was defined as a Cancer in 

pre-defined ontology mappings. Gabapentin may indeed be a good potential repositioning option 

against this disease, according to both mechanism-pathway and therapeutic category consistency. 

The PatientEHRAgent was then used to generate a synthetic patient record with a diagnosis of 

Aberrant Crypt Foci. The profile entailed variables like age (43 years), comorbidities (Hypertension), 

and lab results (e.g., hemoglobin, creatinine). Based on this information, it was possible to calculate 

an eligibility score of 0.432, indicative of a moderate likelihood of fit in a repositioning trial [14]. It 

was multiplied by the clinical match score to provide a repositioning score of 0.605. 
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Fig. 4. Final Regulatory Report 

 

Lastly, a detailed regulatory-style report was prepared by RegulatoryOutputAgent, including an 

execution log. This log provided complete traceability of every decision step and illuminated the 

rationale as given by each agent [15]. As an example, the log captured 27 therapeutic categories that 

were extracted, and the match score was 0.778 with regard to mechanism-pathway match, and the 

rationale of eligibility in light of patient profile. 

In conclusion, the A2A system illustrates an explainable and data-driven strategy to drug repositioning. 

The examination of Gabapentin demonstrates how combined clinical compatibility and patient 

eligibility can inform repositioning in addition to providing a traceable, ordered methodology. 

 

V. DISCUSSION  

The final, holistic score of 0.605 and a system-generated recommendation of RECOMMEND 

indicates the possible efficacy of explainable AI when applied to modular biomedical decision-

making. Although the score slightly surpasses the desired threshold of 0.6, it provides a reasonably 

confident indication of opportunity in the repositioning of Gabapentin to treat Aberrant Crypt Foci, 

pre-cancerous condition associated with the Wnt signaling pathway [16]. This nuanced result 

illustrates the model’s strength in delivering not only a decision but a transparent rationale grounded 

in literature, clinical, and patient-level data. 

Each agent played a crucial role in building the end-to-end logic. The LiteratureAgent extracted and 

summarized drug-specific information including therapeutic categories and molecular targets, 

forming the basis for mechanistic relevance [17]. The TrialProtocolAgent evaluated alignment 

between drug mechanism and disease pathways, outputting a relatively high match score of 0.778. 

Finally, the PatientEHRAgent introduced real-world variability by simulating a patient with relevant 

lab values and comorbidities, yielding an eligibility score of 0.432. The use of three independent 

agents enhanced both interpretability and modularity, allowing each step of the decision to be 

auditable and logically sound [18]. 

The system’s modular, explainable AI design is a notable strength. By separating literature mining, 

protocol matching, and patient profiling into discrete stages, the pipeline enables granular error 

tracing and domain-specific refinement [19]. Moreover, the inclusion of a regulatory-style output—

via the RegulatoryOutputAgent—enhances the applicability of results in clinical and compliance 

settings. 

However, the simulation-based nature of the agents introduces clear limitations. Matching scores, 

eligibility profiles, and decision thresholds are not validated on real-world clinical outcomes. The 

reliance on synthetic data also restricts generalizability. For the model to achieve clinical readiness, 
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integration with validated datasets and feedback loops from actual repositioning trials will be essential 

[20]. Nonetheless, this work offers a promising framework for trustworthy AI-driven drug 

repurposing. 

 

VI.CONCLUSION 

This study presents a multi-agent, explainable AI framework for drug repositioning, integrating 

literature mining, clinical trial protocol analysis, and patient EHR simulation. The system effectively 

identified Gabapentin as a candidate for treating Aberrant Crypt Foci, supported by a composite 

repositioning score of 0.605, justifying a recommendation. Each agent contributed independently to 

enhance modularity, transparency, and auditability, aligning with the needs of biomedical research 

and regulatory standards. 

The framework's strength lies in its ability to simulate the entire repositioning pipeline, offering clear 

rationale at each decision stage. Such modular systems hold significant promise in accelerating 

hypothesis generation, reducing R&D costs, and aiding decision support in clinical research. 

However, the reliance on simulated data remains a key limitation. Future enhancements should 

involve integration of real-world patient records, multilingual NLP for broader literature inclusion, 

and refined scoring algorithms. With such improvements, this model could serve as a robust 

foundation for practical, AI-assisted drug repurposing in precision medicine. 
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