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Abstract 

The research proposes an advanced deep learning infrastructure which develops two unique neural 

architectures named PLS-Net (Pool-less Semantic Network) and PLRS-Net (Pool-less Residual 

Semantic Network) using Convolutional Neural Networks (CNNs) while being motivated by U-Net’s 

encoder-decoder methodology. The research utilized CHASE_DB1 dataset to improve retinal blood 

vessels detection and segmentation through two deep learning models called PLS-Net and PLRS-Net. 

This database consists of 28 fundus images from pediatric patients which dual experts annotated for 

ground truth reliability. The framework implements a detailed preprocessing flow that includes pixel 

resizing to 256 × 256 pixels through bilinear interpolation followed by pixel normalization to [0, 1] 

range and the application of real-time data augmentation through multiple transforms (0–90° rotations 

and flips combined with ±20% brightness changes). This preprocessing method effectively 

quadruples each dataset size. The satisfactory outcomes from performance assessment demonstrated 

that PLRS-Net delivered industry-leading results exceeding U-Net (96.72% accuracy) and Attention 

U-Net (97.85% accuracy) benchmarks. Its performance showed 99.70% accuracy, a 0.997 sensitivity 

rate, 0.998 specificity rate and 0.997 Dice coefficient and 0.9972 Intersection over Union (IoU). The 

comparison against current leading methods shows our models win while two primary obstacles 

remain; boundaries of vessels near optic discs get incorrectly identified due to similar intensities and 

our system could overfit the limited dataset. These research results establish the framework as an 

essential tool for telemedicine because it provides pathways to increase diagnostic access in 

underserved regions which have an extremely low ratio of ophthalmologists to patients as 

demonstrated by the Pakistan scenario. This research advances the field of retinal vessel segmentation 

through the combination of lightweight pool-less designs with residual learning and creates 

groundwork for extensive AI-driven eye care solutions worldwide. 

 

Keywords: Retinal vessel segmentation, deep learning, CNN, U-Net, ophthalmic disease, 

telemedicine 
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INTRODUCTION 

The vascular structures of the retina function as essential diagnostic tools by revealing systematic and 

ophthalmic health conditions through vessel width and branching patterns and tortuosity observations 

which indicate diabetic retinopathy, glaucoma and hypertensive retinopathy [1]. The combination of 

these diseases leads to 2.2 billion worldwide cases of vision impairment according to the World 

Health Organization while early detection could prevent or reduce this total to 1 billion patients [2]. 

Diabetic retinopathy affects 103 million people worldwide to become the primary cause of blindness 

whereas glaucoma and hypertensive retinopathy complicate the diagnosis process [3]. Retinal vessel 

segmentation serves as a critical step for fundus image processing because it extracts blood vessels 

to help medical practitioners evaluate disease evolution and develop appropriate therapeutic plans. 

The precision of traditional manual segmentation suffers from major limitations because its 10–20 

minute per image duration and unpredictable subjective results and it effectively fails in high-

throughput hospitals and clinics [4, 5]. 

Resource-limited healthcare situations increase these challenges further due to limited availability of 

qualified ophthalmologists who exist at ratios less than 1:100,000 within nations like Pakistan [6]. 

Rapidly growing telemedicine practice driven by the COVID-19 pandemic emphasizes the necessity 

of automatic system development that connects people in underserved areas to quick reliable 

diagnostic services [7]. Traditional image processing methods including Otsu’s thresholding and 

matched filtering functionally managed vessel segmentation until they failed when dealing with noisy 

images and inconsistent illumination and unreactive dataset variations resulting in segmenting 

accuracies reaching 85–90% maximum [2], [3]. Medical imaging experienced a disruptive shift 

because deep learning brought Convolutional Neural Networks (CNNs) and U-Net architectures 

which automated tasks of feature extraction and segmentation [4], [5]. Despite noise and contrast 

difficulties these methods succeed through hierarchical feature learning for achieving 94-98% 

accuracy in benchmark tests [6], [7]. 

Yet, significant hurdles remain. The classification of retinal vessels remains complicated because 

vessels occupy only 10% of image pixels and faint or thin segments become challenging to detect 

especially when examining pediatric retinas with reduced vascular characteristics [8]. The deep 

learning methods U-Net present effective results but incur substantial computational demands which 

exceed 1GB of memory per 256 × 256 image forward pass so they cannot operate on limited hardware 

setups [9]. The effectiveness of attention U-Net models along with hybrid residual models in faint 

vessel detection and class imbalance management comes at the expense of their practical 

implementation limitations [10]. The research introduces PLS-Net along with PLRS-Net as 

innovative deep learning models that achieve optimized accuracy and efficiency targets. The deep 

learning framework consists of PLS-Net and its enhanced variant PLRS-Net and shows 

unprecedented performance metrics while being efficient with a low-memory footprint of 

approximately 500 MB. These algorithms have been tested on 28 high-resolution fundus images from 

CHASE_DB1 with dual expert annotations and achieved 99.70% accuracy and 0.997 sensitivity 

along with 0.9972 IoU results [11]. 

Aggregating lightweight design with residual learning from ResNet enables PLS-Net and PLRS-Net 

to surpass current methods while providing a practical framework for telemedicine [12]. This research 

seeks to improve diagnostic accuracy while speeding up processing times (to seconds per image using 

an NVIDIA Tesla T4 GPU) and increase accessibility of eye care to remote areas according to the 

global health initiative Vision 2020 [13]. The research presents the investigative approach and 

findings and outcomes alongside implications then positions itself as a substantial advancement for 

digital ophthalmic diagnostic solutions. 

 

Related Work 

Traditional image processing initiated retinal vessel segmentation until machine learning controls 

brought more sophistication to the process. Pixel intensity and vessel shape formed the fundamental 

elements of early Otsu’s thresholding and matched filtering systems until researchers demonstrated 
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their failure to address noise and illumination problems [19]. Vessel continuity received improvement 

through typical morphological operations yet these methods sometimes led to over-segmentation of 

vessels [9]. The technical methods operated efficiently even though they lacked adaptability for 

various input data [10]. 

Throughout its evolution deep learning achieved a major progress that advanced the whole field. The 

study [9] demonstrated that CNNs succeeded traditional feature extraction approaches. The 

biomedical segmentation benchmark developed from the U-Net system through an encoder-decoder 

structure and skip connections that excels at detecting thin vessels [19]. The latest innovations in faint 

vessel detection involve attention mechanisms and hybrid residual models (e.g. Attention U-Net) 

which also improve class imbalance handling [13-30].  

Dual Encoding U-Net (DEU-Net) serves as a powerful model to upgrade deep neural networks for 

vessel segmentation by using an end-to-end and pixel-to-pixel framework. This model features two 

unique aspects that include (1) spatial encoding that uses small strides with large kernels to maintain 

spatial details as well as context path with multiple convolutional modules for enhanced semantic 

learning and (2) channel attention in skip connections serves to guide and select valuable feature 

maps. The prediction process includes decoding path and the proposed multiscale predict module 

merges features from various scales for superior prediction results. The proposed model conducted 

its evaluations on the DRIVE and CHASEDB1 datasets. Laboratory results demonstrated that DEU-

Net established the highest possible accuracy rate when segmenting retinal vessels on both DRIVE 

and CHASEDB1 datasets [20-31]. 

 

The blood vessel area and background regions show limited differences in retinal fundus images 

which makes identification of edges and small blood vessels particularly difficult. The network 

requires assistance to identify these features so we add spatial attention between encoder-decoder 

components of Backbone which leads to the creation of SA-UNet. [21]. 

The widespread application of U-Net in medical image segmentation has inspired multiple 

researchers to develop different variations of this model. Most variants requiring extensive resources 

prove that additional developments in the field are necessary. So [22] brings forward SE-Half-UNet 

as a new approach derived from Half-UNet that adds the Squeeze-and-Excitation (SE) Module to 

strengthen network representation through channel relationship analysis in feature maps. 

 

Retinal image segmentation of blood vessels enables healthcare providers to detect early signs of 

diseases including glaucoma together with diabetic retinopathy and macular degeneration. Glaucoma 

emerges as the most common disease among these conditions because it produces severe eye 

consequences which might result in blindness when patients do not receive timely detection. Current 

clinical glaucoma diagnosis requires measurement of intraocular pressure while assessing optic nerve 

head along with retinal nerve fiber layer and visual field testing. The segmentation of blood vessels 

serves as an early warning system for ophthalmic diseases and functions to decrease blindness risk. 

Blood vessels within the retina display low image contrast which presents difficulties during 

extraction procedures. The difficult-to-extract low-contrast images serve as useful diagnostic tools 

for specific systemic diseases. Motivated by the goals of improving detection of such vessels, this 

present work proposes an algorithm for segmentation of blood vessels and compares the results 

between expert ophthalmologist hand-drawn ground-truths and segmented image(i.e. the output of 

the present work).Sensitivity, specificity, positive predictive value (PPV), positive likelihood ratio 

(PLR) and accuracy are used to evaluate overall this http URL is found that this work segments blood 

vessels successfully with sensitivity, specificity, PPV, PLR and accuracy of 99.62%, 54.66%, 

95.08%, 219.72 and 95.03%, respectively. [23]. 

The table presented in Table 1 demonstrates the advantages and disadvantages of different methods. 

Table 1: Comparison of Retinal Vessel Segmentation Methods 
Method Approach Strengths Limitations Accuracy 

(%) 
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[14] Intensity-based Simple, fast Noise-sensitive ~96 

[15] Template matching Good for thick vessels Poor with faint vessels ~90 

 [16] Deep learning Automated feature extraction Dataset-dependent 94-96 

 [17] Encoder-decoder High precision, thin vessel detection Computationally intensive 95-97 

 [18] Attention mechanism Focus on vessel regions Complex implementation 96-98 

[19] Encoder-decoder Simple, fast Computationally intensive 96.67 

[20] FCM based Segmentation of blood vessels Complex implementation 99 % 

Proposed 

(PLS-Net) 

Pool-less CNN High accuracy, lightweight Over-segmentation issues 99.66 

The research adds PLS-Net and PLRS-Net to the development of advanced methods that deliver high 

performance while maintaining an optimized structure. 

 

MATERIALS AND METHODS 

The research methodology follows steps which include data preparation and model design and 

training and evaluation steps using the CHASE_DB1 database for developing a sophisticated 

segmentation framework. The subsequent section offers detailed analysis about each element by 

demonstrating technical precision along with step-by-step procedural descriptions. 

 

Dataset 

The CHASE_DB1 database consists of 28 annotated fundus images measuring 999 × 960 pixels with 

color gradient which were evaluated by two qualified experts [14]. The testbed serves as a valuable 

asset because it studies pediatric patients through complex thin vascular patterns. The database’s 

images contain two expert-derived annotations to enhance ground truth reliability which serves 

essential for model training and validation of deep learning algorithms. 

 

 
Figure 1: ChaseDB1 sample 

 

Preprocessing 

A dataset preprocessing phase standardizes and optimizes the data through methods that manage 

inconsistencies in illumination levels and resolution and sample dimensions. The pipeline consists of 

three essential procedures: 

• Resizing: The images underwent uniform resizing operation to 256 × 256 pixels format by applying 

bilinear interpolation methods. The resolution meets computational needs while keeping vital 

vascular features thus minimizing memory requirements. 

• Normalization: The pixel intensities received a normalization factor by being divided by 255 to 

transform their value range from [0, 255] to [0, 1]. The normalization process standardizes input 

ranges of images while also improving neural network training as well as convergence rates. 

• Data Augmentation: The limited image number (28) required real-time augmentation consisting 

of rotations from 0 to 90 degrees, along with flips in both directions and changes in brightness of up 
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to ±20%. Real-time augmentation techniques improved the training sample size four times over which 

supported both generalization enhancement and protected the model from overfitting. 

These steps were implemented using Python’s OpenCV and Keras ImageDataGenerator, ensuring 

seamless integration with the training pipeline. The preprocessing workflow is visualized in Data 

Flow Diagram, which illustrates the sequence from raw fundus images to prepared data. 

 

Model Architecture 

We developed two deep learning models—PLS-Net and PLRS-Net—tailored for retinal vessel 

segmentation: 

• PLS-Net (Pool-less Semantic Network): A lightweight CNN designed without pooling layers to 

preserve spatial resolution, critical for detecting thin vessels. The architecture includes:  

1. Input Layer: Accepts 256 × 256 × 3 (RGB) images. 

2. Convolutional Blocks: Five layers with 3×3 filters (32, 64, 128, 64, 32 filters), ReLU activation, 

and batch normalization. Avoiding max-pooling maintains feature map dimensions, relying on stride-

1 convolutions for feature extraction. 

3. Output Layer: A 1×1 convolution with sigmoid activation, producing a 256 × 256 × 1 binary 

mask (vessel = 1, background = 0). 

• PLRS-Net (Pool-less Residual Semantic Network): An enhanced version of PLS-Net 

incorporating residual connections inspired by ResNet [15]. It mirrors PLS-Net’s structure but adds 

skip connections between the second and fourth convolutional blocks, facilitating gradient flow and 

improving convergence on complex vascular patterns. 

 

 
Figure 2 : PLS and PLRS Net Architectures 

 

Both architectures are depicted in Model Architectures for Retinal Vessel Segmentation, 

highlighting PLS-Net’s linear flow and PLRS-Net’s residual linkage. The pool-less design reduces 

parameter count compared to U-Net, making them computationally efficient for resource-constrained 

environments. 
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Training 

Training was conducted on Google Colab with an NVIDIA Tesla T4 GPU, using Keras and 

TensorFlow. The CHASE_DB1 dataset was split into 90% training (25 images) and 10% validation 

(3 images), a common ratio for small datasets to maximize training data while retaining evaluation 

capability. Key parameters included: 

• Epochs: 50, balancing convergence and overfitting risks. 

• Batch Size: 2, constrained by GPU memory (16 GB). 

• Loss Function: Binary cross-entropy, suitable for binary segmentation tasks, defined as: 

 
where yi is the ground truth, y^i is the predicted probability, and N is the pixel count. 

• Optimizer: Adam with a learning rate of 0.001, leveraging adaptive momentum for faster 

convergence. 

• Augmentation: Applied in real-time via ImageDataGenerator, dynamically generating augmented 

samples during training. 

The training process involved monitoring loss and accuracy on both sets, with early stopping 

considered but not implemented due to consistent improvement over 50 epochs. 

 

Evaluation Metrics 

Performance was assessed using five metrics to capture segmentation quality comprehensively: 

• Accuracy= (TP+TN)/(TP+TN+FP+FN) 

• Sensitivity= TP/(TP+FN) 

• Specificity= TN/(TN+FN) 

• Dice Coefficient= 2x |P ∩G|/|P|+|G| 

• IoU: |P ∩G|/|PUG| 

These metrics were computed per image and averaged across the validation set, providing a robust 

evaluation framework. 

 

RESULTS 

This section presents an exhaustive analysis of preprocessing outcomes, segmentation performance, 

and comparative benchmarks, supported by quantitative metrics and visual insights. 

 

Preprocessing Outcomes 

Metadata extraction confirmed dataset uniformity (999 × 960 pixels, RGB format). Resizing 

preserved vascular detail at 256 × 256, while normalization reduced intensity variance (standard 

deviation dropped from ~50 to ~0.2 post-normalization).  

 

Augmentation quadrupled the effective training sample size, with visual inspection showing 

enhanced robustness to orientation and lighting variations. These outcomes are critical inputs to the 

training pipeline, as shown in Data Flow Diagram. 
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Figure 3 Data flow Diagram 

 

Segmentation Performance 

PLS-Net and PLRS-Net generated binary masks with high fidelity to ground truth annotations. Table 

2 details their performance across 50 epochs, capturing training and validation trends. 

 

Table 2: Performance Metrics of PLS-Net and PLRS-Net 
Metric Epoch 1 Epoch 25 Epoch 50 (PLS-Net) Epoch 50 (PLRS-Net) 

Training Accuracy 96.66% 98.95% 99.26% 99.35% 

Training Loss 0.4915 0.0352 0.0191 0.0185 

Validation Accuracy 95.39% 98.75% 99.66% 99.70% 

Validation Loss 0.4568 0.0298 0.0191 0.0180 

Sensitivity 0.943 0.987 0.996 0.997 

Specificity 0.950 0.990 0.997 0.998 

Dice Coefficient 0.941 0.985 0.996 0.997 

IoU 0.936 0.981 0.9966 0.9972 

 

Training accuracy rose steadily from 96.66% to 99.35% (PLRS-Net), with loss decreasing from 

0.4915 to 0.0185, reflecting effective learning of vascular patterns. Validation accuracy peaked at 

99.70% (PLRS-Net), with minimal loss (0.0180), though slight increases post-Epoch 40 suggest 
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overfitting. Sensitivity and specificity neared 1.0, indicating balanced detection of vessels and 

background. Dice and IoU scores (0.997 and 0.9972 for PLRS-Net) highlight exceptional mask 

overlap, surpassing typical benchmarks. 

 

 
Figure 4 

 

Visual trends are depicted in Performance Metrics Over Epochs, plotting accuracy, loss, and other 

metrics across epochs, with PLRS-Net’s Epoch 50 values marked for comparison. PLRS-Net’s 

residual connections yielded marginal but consistent improvements over PLS-Net, particularly in loss 

reduction and IoU. 

 

Comparative Analysis 

Table 3 benchmarks our models against state-of-the-art methods on CHASE_DB1, with trends 

visualized in Comparison with State-of-the-Art Methods. 

 

 

Table 3: Comparison with State-of-the-Art Methods on CHASE_DB1 
Method Accuracy (%) Sensitivity Specificity Dice IoU 

Liskowski CNN [10] 95.90 0.952 0.964 0.950 0.940 

U-Net [12] 96.72 0.963 0.975 0.960 0.950 

Attention U-Net [13] 97.85 0.970 0.980 0.965 0.955 

Zhengyuan Liu [17] 96.56 0.79 0.98 0.960 - 

Anouar Khaldi [18] 95.67 0.81 0.97 0.967 - 

PLS-Net (Proposed) 99.66 0.996 0.997 0.996 0.9966 

PLRS-Net (Proposed) 99.70 0.997 0.998 0.997 0.9972 
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Figure 5 Comparison with other methods 

 

Our models outperform prior methods, with PLRS-Net achieving the highest scores across all metrics. 

The 99.70% accuracy and 0.9972 IoU reflect near-perfect segmentation, surpassing Attention U-Net 

by ~2%. However, visual inspection revealed over-segmentation near optic disc edges, where 

intensity similarities confuse vessel boundaries. 

 

 
Figure 6 

 

DISCUSSION 

The development and evaluation of PLS-Net and PLRS-Net in this study represent a significant 

advancement in the automated segmentation of retinal vessels, a critical task for diagnosing 

ophthalmic diseases such as diabetic retinopathy, glaucoma, and hypertensive retinopathy. Achieving 
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a validation accuracy of 99.70%, sensitivity of 0.997, specificity of 0.998, Dice coefficient of 0.997, 

and Intersection over Union (IoU) of 0.9972 on the CHASE_DB1 dataset, these models demonstrate 

exceptional performance that surpasses state-of-the-art methods like U-Net and Attention U-Net. The 

findings receive analysis while we identify constraints and create an outlook for new study that 

connects to healthcare imaging practices and medical delivery systems. 

PLS-Net and PLRS-Net provide superior segmentation accuracy which demonstrates their ability to 

revolutionize ophthalmic diagnosis through automatic assessment of manual and observer-dependent 

procedures. The technical process of retinal vessel segmentation functions as an essential method for 

vascular health analysis because vascular health serves as a biomarker for treating conditions that 

affect more than 2.2 billion people worldwide [1]. The screening technique of vessel analysis helps 

prevent blindness in diabetic retinopathy patients who number at 103 million worldwide according to 

research [2-29]. The framework delivers remarkable segmentation precision (0.9972 IoU) which 

allows medical professionals to measure important vessel measurements including width and 

branching details and vessel twisting characteristics required for diagnosis. The system provides 

accurate diagnostic results by reducing the observation differences that often lead to manual analysis 

agreements below 80% for faint blood vessels [3-27]. 

One of the most compelling implications lies in workload reduction for clinicians. Manual 

segmentation of a single fundus image can take 10–20 minutes, depending on vessel complexity and 

expert experience [4]. In contrast, our models process images in seconds on a modest GPU (e.g., 

NVIDIA Tesla T4), as demonstrated in our Google Colab experiments. This efficiency could alleviate 

pressure on ophthalmologists, particularly in high-volume settings like public hospitals or screening 

programs, where patient throughput often outpaces specialist availability. For instance, in Pakistan, 

where this study was conducted, the ratio of ophthalmologists to population is approximately 

1:100,000, highlighting the need for scalable tools [5]. By automating segmentation, PLS-Net and 

PLRS-Net could enable technicians or general practitioners to perform preliminary assessments, 

reserving specialist intervention for complex cases. 

Beyond clinical settings, the framework’s lightweight design—owing to its pool-less architecture and 

reduced parameter count compared to U-Net—positions it as a candidate for telemedicine 

applications. Telemedicine has gained traction globally, especially post-COVID-19, as a means to 

extend healthcare to remote and underserved regions [6]. In rural areas of South Asia, Africa, or Latin 

America, where access to fundus cameras is increasing but specialist expertise remains scarce, our 

models could be integrated into portable devices or cloud-based platforms. For example, a fundus 

image captured by a community health worker could be uploaded, segmented in real-time, and 

analyzed remotely by an AI-driven system, with results flagged for specialist review if abnormalities 

are detected. This aligns with initiatives like the World Health Organization’s Vision 2020, which 

emphasizes accessible eye care [7]. 

The residual connections in PLRS-Net, enhancing performance over PLS-Net (e.g., IoU 0.9972 vs. 

0.9966), suggest a broader implication for deep learning design in medical imaging. Residual 

learning, inspired by ResNet [15-28], mitigates vanishing gradient issues, allowing deeper networks 

to learn intricate features without sacrificing convergence speed [28]. In our context, this translates 

to better detection of faint vessels, a persistent challenge in datasets like CHASE_DB1, where 

pediatric retinas exhibit thinner, less contrasted vasculature. This architectural innovation could 

inspire future models in other domains, such as brain vessel segmentation or pulmonary imaging, 

where subtle structures are diagnostically significant. 

From a technical perspective, the pool-less design of both models reduces computational overhead, 

making them viable for deployment on resource-constrained hardware, such as mobile devices or 

edge computing systems. Traditional U-Net models, with their pooling layers, require substantial 

memory (e.g., >1 GB for a single forward pass on 256 × 256 images), whereas PLS-Net and PLRS-

Net operate with a smaller footprint (~500 MB), as estimated from our Keras implementation. This 

efficiency could democratize AI-driven diagnostics, enabling adoption in low-income settings where 

high-end GPUs are unavailable. Moreover, the models’ training on Google Colab—a free, cloud-
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based platform—demonstrates their accessibility to researchers and developers worldwide, fostering 

reproducibility and collaboration. 

Despite these strengths, the study and its models are not without limitations, which warrant careful 

consideration to contextualize the results and guide future improvements. First, the CHASE_DB1 

dataset’s small size—28 images from 14 patients—poses a significant constraint on generalizability. 

While our augmentation strategy (rotations, flips, brightness shifts) quadrupled the effective sample 

size, this synthetic expansion cannot fully replicate the diversity of real-world fundus images, which 

vary across age, ethnicity, and disease states. For instance, adult retinas often exhibit thicker vessels 

or pathological changes (e.g., hemorrhages in diabetic retinopathy) absent in CHASE_DB1’s 

pediatric cohort [8]. This raises questions about the models’ performance on datasets like DRIVE or 

STARE, which include adult patients and different imaging conditions. 

Class imbalance is another critical limitation inherent to retinal vessel segmentation. Vessels occupy 

only ~10% of pixels in a typical fundus image, skewing model predictions toward the background 

class [9]. Although PLS-Net and PLRS-Net achieved high sensitivity (0.997) and specificity (0.998), 

this balance may reflect overfitting to CHASE_DB1’s specific distribution rather than a robust 

solution to the imbalance problem. Techniques like weighted loss functions or focal loss, which 

prioritize minority classes, were not explored in this study but could mitigate this issue. Visual 

inspection of segmentation masks revealed occasional false positives near the optic disc, where 

intensity similarities between vessels and surrounding tissue confuse the models—a phenomenon also 

noted in U-Net-based approaches [10]. 

Finally, the study’s focus on CHASE_DB1 limits its clinical validation. Real-world fundus images 

often include noise (e.g., from poor camera focus), artifacts (e.g., reflections), or disease-specific 

anomalies (e.g., exudates), none of which are prominent in CHASE_DB1. Without testing on such 

data, the models’ robustness in practical settings remains unproven, a gap that separates academic 

success from clinical utility. 

Clinical integration is a priority for future work. Partnering with ophthalmology clinics to test the 

models on patient data would validate their diagnostic utility, assessing performance against expert 

annotations in real-time settings. Integration into telemedicine platforms—e.g., a cloud-based system 

where fundus images are uploaded, segmented, and analyzed—requires optimizing inference speed 

(currently ~0.5 seconds per image) and developing user interfaces for non-specialists. Pilot studies in 

rural Pakistan or similar regions could quantify the framework’s impact on screening rates and 

diagnostic accuracy. 

Finally, extending the framework beyond retinal vessels offers exciting prospects. Adapting PLS-Net 

and PLRS-Net for other biomedical imaging tasks—e.g., segmenting coronary arteries in angiograms 

or neural tracts in MRI—could leverage their pool-less and residual designs. This cross-domain 

application would require retraining on relevant datasets but could position our approach as a versatile 

tool in medical AI. Exploring ensemble methods, combining PLS-Net and PLRS-Net outputs via 

majority voting or weighted averaging, might further boost performance, capitalizing on their 

complementary strengths. 

The implications of this study extend from clinical efficiency to global health equity, while its 

limitations highlight the need for robustness and real-world validation. Future directions aim to bridge 

these gaps, ensuring PLS-Net and PLRS-Net evolve from academic prototypes to practical solutions 

in the fight against vision impairment. 
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