A SYSTEMATIC REVIEW OF MEDICATION SAFETY OUTCOMES RELATED TO DRUG INTERACTION SOFTWARE

Kevin Wong1,3, Savio KH Yu1, Anne Holbrook1,2,3

1Centre for Evaluation of Medicines, Hamilton, Ontario; 2Division of Clinical Pharmacology & Therapeutics McMaster University, Hamilton, Ontario; 3Faculty of Pharmaceutical Sciences University of Toronto, Toronto, Ontario

Corresponding Author: holbrook@mcmaster.ca

ABSTRACT

Background
Adverse drug events (ADEs) represent an important problem for hospital and primary care. Software that detects potential adverse drug interactions has been widely implemented in an effort to reduce the rate of ADEs. However, the impact of drug interaction detection software (DIS) on patient safety outcomes remains unknown.

Objectives
To systematically review the literature on DIS in preventing adverse drug events and determine the effectiveness and cost-effectiveness of DIS.

Methods
A literature search of MEDLINE, EMBASE, CINAHL, IPA and Healthstar, using terms “Computer, Software or Decision Support” combined with “Drug Interactions, Drug Errors or Drug Monitoring” sought English language, post-1990 prospective studies that examined drug interaction (drug-drug) software as an intervention and adverse drug interactions as an outcome. Relevant studies were analyzed using a Bayesian meta-analysis approach.

Results
Of 5848 citations, only four studies met our inclusion criteria. Most of the excluded studies were not prospective or measured only prescriber attitudes, implementation success or changes in workflow. No study examined the impact of drug interaction software exclusively, rather as a component of decision support software. A Bayesian meta-analysis of these studies showed no significant difference in event rate between intervention and control groups (relative risk 0.66, 95% CI 0.33 to 1.18). The posterior median I-squared was 52%.

Conclusion
No good quality studies address the specific benefits and harms or cost-effectiveness of drug interaction software on medication safety or clinical outcomes. The evidence at present does not support a benefit for these systems or support any policy to widely disseminate their use.

Keywords: Drug interactions, computerized decision support systems, adverse drug event, systematic review
care will improve patient safety and cost-effectiveness of care remains unproven. Recent reviews evaluating the effectiveness of electronic prescribing or computer decision support systems (CDSS) focused on prescribing (which often include drug interaction checking), show that while practitioner performance and medication error rates may improve, there is no evidence of improved patient outcomes.2,5

Health Canada, the federal department responsible for the regulation and monitoring of health products and devices, has made the development and implementation of an effective, interoperable Electronic Health Record in Canada an immediate priority to aid clinicians, in part, to reduce adverse medication events.6 However, no guidelines have been issued regarding drug interaction software (DIS). In the United States, the American Medical Informatics Association has created an action plan for electronic prescribing, which includes drug interaction checking as a basic requirement.7 In the United Kingdom, where most primary care physicians use an electronic health record,8 the National Health Service has moved towards full electronic prescribing, with aims to include drug interaction detection.9 In response, CDSS, which provide clinicians with electronic feedback and advice on individual patients, have been rapidly developing in hopes of improving patient safety and the efficiency of care. Many of these systems target medication safety - for example, drug-drug interaction checking, allergy alerts, dose adjustment advice and drug monitoring suggestions. In previous studies with primary care physicians, we have found that drug interactions were routinely amongst the top 3 topics mentioned as important information needs amenable to electronic solutions.10

As various agencies across the world encourage the computerization and electronic integration of health care, fundamental issues such as relative benefit versus harm and cost-effectiveness, remain unresolved. Unexpected harms related to errors in algorithms, screen display, patient data input or poor attention to clinical severity issues, have only been recently appreciated. Cost-effectiveness is a major question given the billions of dollars required for each country’s investment.11 Regularly updated CDSS systematic reviews still find no consistent evidence of benefit for patient outcomes.3 All of these issues apply to electronic drug interaction checking systems.

Our previous systematic reviews have highlighted the low quality of the cumulative drug interaction literature - primarily an assorted number of case reports without denominators to estimate incidence or prevalence.12,13 Unbiased comparisons such as those in a randomized trial, are virtually non-existent in the drug interaction literature. The underlying poor quality of recommendations made about drug interactions compounded with the additional technical and usability problems raised by software, makes it likely that electronic drug interaction software (DIS) has the potential to do more harm than good.13-16 Yet, DIS is ubiquitously employed by health care professionals such as pharmacists, physicians and nurses as well as integrated in most advanced electronic medical records and e-prescribing systems in health care institutions. No systematic reviews seem to address these important questions of effectiveness, safety and cost-effectiveness of DIS in clinical care.

\textbf{OBJECTIVE}

Our objective was to summarize the evidence on drug interaction software and its impact on patient medication safety outcomes and cost-effectiveness. The primary outcome of interest was the avoidance of adverse drug events, measured as the rate of adverse drug events. Adverse drug interaction events prevented are potential events prevented by the software alerting the clinician. The presumption is that the clinician takes appropriate action, although this is rarely confirmed. Other outcomes of interest were clinical patient outcomes as well as harms and costs of the intervention. If sufficient information was provided on outcomes and costs, a cost-effectiveness analysis was planned.

\textbf{METHODS}

This systematic review followed a process outlined in the Cochrane Collaboration Handbook of Systematic Reviews.15 We wished to identify English-language randomized or non-randomized studies that evaluated drug interaction software either as a stand-alone product or as part of a larger clinical decision support system but with outcomes measured specific to the DIS. DIS was defined as software to detect and provide alerts regarding drug-drug interactions at the point of prescribing or dispensing.17 Both hospital and
community settings were included. Although patient outcomes such as morbidity or mortality are the most important, we hypothesized that studies on DIS would not likely be powered to address clinical outcomes. Therefore, surrogate markers for medication safety such as the number of potential adverse drug interaction events prevented, the adverse drug interaction event rate, or the number of inappropriate medications prescribed, were sought. Studies were excluded if they did not measure one of the relevant outcomes, did not provide data that allowed analysis of drug interaction checking vs. control, or were published before 1990. A hand-search of articles from the retrieved reviews was also included.

Two independent reviewers conducted a literature search of the following relevant databases: Medline, EMBASE, CINAHL, IPA and Healthstar using a developed search strategy (Appendix 1). Databases were searched from January 1966 to June 2006. These and similar terms to “Computer, Software or Decision Support” were combined using the “AND” operator with mapped equivalents of “Drug Interactions, Drug Errors or Drug Monitoring”. To ensure that we captured articles that were not mapped to a subject heading, a wildcard term for electronic prescribing (prescrib$) was also included. Titles were assessed for their relevance. Irrelevant titles were discarded from further review. All results were transferred to Reference Manager v11 (Thomson ISI ResearchSoft, Philadelphia, Pa) for organizational and analytical purposes. Any discrepancies on the relevance of the results between the reviewers were discussed. If no consensus was reached, a third assessor was consulted. Abstracts were then assessed for relevance using a data abstraction form (see Appendix 2), specifically designed for this study. Again, any discrepancies amongst the reviewers were discussed with disagreements resolved by the third assessor.

All relevant abstracts then underwent detailed data extraction, which included study design, the quality of the study methods, setting, patient type, details of drug interaction checking software, comparisons, outcomes and economic variables (see Appendix 3). All results were entered in SAS v9.1 (SAS Institute Inc, Cary, NC) and assessed for potential quantitative meta-analysis. A Bayesian meta-analysis random effects model based on a Poisson regression, was conducted to account for the uncertainty in the estimate of between-study variability. Sensitivity analyses were performed to further explore heterogeneity.

RESULTS

The five databases yielded a total of 5848 citations for review. The abstracts of the 955 relevant titles were then reviewed. We excluded 925 of these and reviewed the full text of 30 articles. We then excluded 26 articles from the meta-analysis for not reporting the targeted clinical and surrogate outcomes. For example, excluded studies did not report separate drug interaction data. The remaining 4 studies were included in a meta-analysis. Figure 1 outlines this weaning process.
A systematic review of medication safety outcomes related to drug interaction software

FIG. 1 Study Flow Diagram

Description of Studies

A summary of the four studies selected for data abstraction is presented in Table 1. Three of the studies were conducted in a hospital setting,16,40,42 while the fourth was performed in a primary care environment.41 The median duration of studies was 6 months (range 5-12 months). Methodological rigor varied between studies and did not seem to improve with the more recent studies. A total of 80,471 patient days/visits were recorded across all studies. None of the studies provided any data regarding clinical patient outcomes or cost-effectiveness of the interventions. Only one study was a randomized control trial, the others were conducted with a prospective design.

With the more recent studies. A total of 80,471 patient days/visits were recorded across all studies. None of the studies provided any data regarding clinical patient outcomes or cost-effectiveness of the interventions. Only one study was a randomized control trial, the others were conducted with a prospective design.
The study by Tamblyn et al41 was a cluster randomized trial in primary care designed to test computerized prescribing support targeted to elderly patients and specific practices considered to be inappropriate. This included selected drug-drug interaction alerts – those judged to be particularly clinically relevant. The physicians did not use electronic health records but had stand-alone computers with the electronic decision support provided by the study. The baseline rate of inappropriate drug-drug interaction prescriptions was 2.5% and there was no improvement over the course of the study in the intervention group compared to control.

Oliven et al42 conducted a prospective cohort study examining the effect of CPOE with drug-drug interaction checking as a component, on 2 internal medicine wards. Although the wards were similar on some global demographics, they had a different set of providers as well as different prescribing methods – one by CPOE and one by hand. The study was carried out 3 years after the CPOE ward had computerized and was able to show a lower rate of adverse drug-drug interactions on the CPOE ward over 6 months (p < 0.01). The remaining two studies employed weaker designs, without concurrent control groups. Bates et al40 used a before-after design with interrupted time series to study the effect of CPOE implementation on medication errors of various types over 7 months in several medical and intensive care units in a tertiary care hospital. Drug-drug interactions were detected using the DIS. Adverse drug interactions events were rare at both baseline and study end (1.2 /1000 patient days and 0/1000 patient days), with no significant change (p = 0.19). The study by Potts et al16 used a before-after design to study medication errors before and after a hospital-wide CPOE installation, in a critically ill paediatric population. The DIS was capable of determining drug-drug interactions. Their definition of medication errors was extremely broad and included hospital rule violations regarding acceptable abbreviations. There was only 1 drug-drug interaction per 6803 patients in the baseline period and none in the follow-up period in 7025 patients. This difference was not statistically significant.
Data Abstraction and Meta-analysis
For all four studies, the number of recorded adverse drug interaction events included a variety of reported results: the absolute number of DIs, the DI rate per patient-days, the DI rate per patient visits, and the DIs ratio per patient. These numbers were standardized using a rate per 1000 patient days as a DI event rate. The DI event rate in the intervention group or intervention period was then compared to the control group or control period. Where the DI event rate was not reported, we were able to calculate it manually. For the purposes of the analysis, a patient visit in a primary care setting was assumed to be equivalent to a patient day in a hospital. For the cluster RCT, the study’s rate ratio with confidence limits was used in the meta-analysis instead of raw event rates, as the former was adjusted for the cluster design. The analysis showed a non-significant overall effect (relative risk is 0.66, 95% CI 0.33 to 1.18). The posterior median I-squared was 52%, indicating insufficient information to assess the impact of study design on between-study heterogeneity. Figure 2 shows the results of the meta-analysis.

FIG. 2 Meta-analysis of Drug Interaction Events

Two sensitivity analyses were conducted, each removing one study from analysis (Tamblyn and Oliven). The Tamblyn paper was excluded first, to see if there was heterogeneity amongst the hospital-based, non-randomized studies. Oliven was excluded in the second analysis as it had a noticeably higher event rate than the other papers. The results of the sensitivity analyses did not assist in reducing heterogeneity. Costs were not elaborated upon in
the included studies, preventing any economic analysis regarding cost-effectiveness.

DISCUSSION

The limited number of studies that fulfilled the inclusion criteria demonstrates the lack of definitive evidence surrounding drug interaction software. Of 5848 potential studies, only 4 satisfied our inclusion criteria of studies measuring even a reasonable surrogate outcome specific to the DIS. Many of the potential studies had no patient outcomes reported, nor an adequate description of study methods. This finding demonstrates the need for further research to identify the direct patient benefit from DIS.

Amongst the four included studies, several problems hampered our analysis. First, none focused on the specific effect of electronic drug interaction checking. Only one study reported a statistically significant effect on adverse drug interactions but the event rate was also unusually high in comparison with the other studies; a potential contributor to the heterogeneity amongst the included studies. Second, none of the included studies was amenable to an economic analysis. Although several studies mentioned cost or financial benefit, none adequately reported outcomes and resource utilization to be able to estimate cost-effectiveness. Third, the non-randomized studies are highly susceptible to bias. In addition to the lack of randomization, which is key to validity, the studies were unblinded, used non-uniform assessments of outcomes, and in some cases, the evaluation of the program occurred after significant resources were used for the implementation. Fourth, as these are complex technology interventions, it is likely that they were imperfectly implemented, including the drug interaction detection component. Finally, the rate of adverse drug interactions in several of the studies was very low, throwing into question whether screening for drug interactions, with its poor underlying information quality, is a worthwhile endeavor at all. No study discussed any prior validation work on the drug interaction knowledge base.

This systematic review has a few potential limitations. First, we deliberately narrowed the scope of the study to software advising on drug interactions, and these results cannot be extrapolated to other forms of CDSS. The effect of CDSS has been studied in other systematic reviews, including an attempt to identify which features predict success of the CDSS. Second, excluding non-English studies, abstracts from clinical meetings and other grey literature may have missed some studies; but, these would not be likely to be high quality studies. Third, we did not contact leading authors for unpublished results. Lastly, we did not test for publication bias, since the overall effect of these studies was negative. However, it is possible that studies, in which the effect of drug interaction checking software was harmful, could have been suppressed and remained unpublished.

CONCLUSION

There is a distinct lack of evidence to support the touted benefits or cost-effectiveness of drug interaction software. Without sufficient evidence, we believe that large investments to support widespread implementation of these software in clinical practice are premature. The drug interaction literature itself is of insufficient quality to mandate against most drug combinations and the methods of presenting computerized decision support, including drug interactions, require further refinement. Although decreasing medication errors is a laudable goal, health information technology should be held to the commonly accepted and well understood current standards of evidence, which are based on randomized trials examining clinical patient outcomes. We believe that there is an urgent need for higher quality studies exploring drug interactions specifically, then a need for studies exploring the impact of software detecting and alerting clinicians at the point of prescribing of high clinical impact drug interactions.

Acknowledgements and Funding
The authors would like to thank Drs Eleanor Pullenayegum and Gary Foster for assistance with the meta-analysis and Ms. Anita DiLoreto for assistance with the literature searches. This work was funded in part by a grant from the Canadian Patient Safety Institute.
APPENDIX 1 - Database Search Strategy

HealthStar
Computers OR software OR decision making, computer assisted OR therapy, computer assisted OR e-presc$ OR electronic presc$ OR decision support systems, clinical OR decision support techniques AND (drug-interactions OR drug monitoring OR Medication Error)

Medline
Computers OR software OR decision making, computer assisted OR therapy, computer assisted OR e-presc$ OR electronic presc$ OR decision support systems, clinical OR decision support techniques AND (drug-interactions OR drug monitoring OR Medication Error)

EMBASE
computer OR computer program OR computer system OR decision making OR computer analysis OR E-pres$ OR electronic presc$ OR decision support systems, clinical OR decision support techniques AND (drug interaction OR chemical interaction OR drug monitoring OR Medication error)

CINAHL
decision making, computer assisted OR computers & computerization OR software OR E-pres$ OR electronic presc$ OR decision support systems, clinical OR decision support techniques AND (drug interactions OR drug monitoring OR Medication Errors)

IPA
Computers OR Prescribing OR Decision Making OR e-presc$ OR electronic presc$ AND Drug Interactions OR monitoring
APPENDIX 2 - Data Relevance Form (Abstract Evaluation)

Data Relevance Form: Evaluation of Drug Interaction Software

Reference ID#: Primary Author: Date:

Reviewer:
☐ SY ☐ KW

1. Definitions:
A) Drug-drug interaction: The action of a drug that may affect the activity, metabolism, or toxicity of another drug.

2. Exclusion Criteria:
☐ Article is an opinion paper or a systematic review (evaluate references for inclusion)
☐ Retrospective study
☐ Does not examine a software application that provides clinical support for A, B, C or D
☐ Study examining software design, with no measurable outcome
☐ Study comparing various software programs, with no measurable outcome

3. Study Satisfies Inclusion Criteria:
☐ Yes (proceed with data collection)
☐ No (document and exclude from analysis)
Appendix 3: Data Extraction Form (Full Article Evaluation)

Data Extraction Form: Evaluation of Drug Interaction Software
Reference ID#: Primary Author: Date:

Reviewer: □ SY □ KW

I: Study Description

1. Publication Source:
 a. □ Medline b. □ EMBASE
c. □ CINAHL d. □ IPA
e. □ Referenced in another article f. □ Other

2. Language:
 f. □ Japanese g. □ Other

3. Country of Study:
 a. □ USA b. □ Canada c. □ UK d. □ Australia e. □ France
 f. □ Germany g. □ China h. □ Japan i. □ Other

4. Funding Source:
 a. □ Government b. □ Industry
c. □ Academic Organization d. □ Non-Profit / Charity
e. □ Professional Organization f. □ Other
g. □ Unclear h. □ Unreported
 i. Notes:

5. Applicable Definitions:
d. □ Other

II: Methods/Validity

6. Study Population:
 a. □ Physicians b. □ Pharmacists
c. □ Patients d. □ Other
e. □ Unknown f. □ Number of Participants

7. Intervention:
 a. □ Number of Alerts b. □ Number of Alerts Overridden
c. □ Number of Clinically Significant Alerts d. □ Other

8. Duration of Study (months):
 a.
A systematic review of medication safety outcomes related to drug interaction software

9. Level of Randomization:
 a. □ Cluster / Group b. □ Individual
 c. □ Unknown d. □ Other

10. Method of Randomization:
 a. □ Coin Flip b. □ Randomization Table
 c. □ Alternating Treatment Allocation d. □ Unclear
 e. □ Not reported

11. Study Setting:
 a. □ Primary Care b. □ Teaching Hospital
 c. □ Community Hospital d. □ Pharmacy
 e. □ Other

12. Intention to Treat Analysis:
 a. □ Yes b. □ No
 c. □ Not applicable

13. Reasons for Withdrawal Given:
 a. □ Yes b. □ No

14. Adequate Sample Size Calculation:
 a. □ Yes b. □ No

15. Outcome Assessment:
 a. □ Objective b. □ Subjective with blinding
 c. □ Subjective without blinding but with pre-specified evaluation criteria d. □ Subjective without blinding or pre-specified evaluation criteria
 e. □ Unclear

III: Cost-Benefit Analysis

16. Performed:
 a. □ Yes b. □ No

17. Perspective:
 a. □ Patient b. □ Physician
 c. □ Pharmacist d. □ Hospital
 e. □ Pharmacy f. □ Not Reported
 g. □ Other

18. Value Units:
 a. □ QALY b. □ Adjusted monetary value
 c. □ Unadjusted monetary value d. □ Unclear
 e. □ Other
REFERENCES

